211 research outputs found

    Highly-Resolved Numerical Simulation of the Turbulent Combustion Process in Experimental Burners

    Get PDF
    This paper presents investigations of experimentally well-characterised turbulent flames with highly-resolved Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS). The combustion process is modelled with a flamelet-based approach, which assumes that the local turbulent flame structure can be described by an ensemble of wrinkled laminar flames. Good agreements between the simulation results and experimental measurement data is achieved. The governing equations are discretised with the Finite Volume Method (FVM). The numerical implementation is tailored for massively parallel simulations on a large number of grid cells. The computational efficiency benefits from the applied simple grid structure and the use of non-blocking Message Passing Interface (MPI) parallelisation

    The CARE accelerator R&D programme in Europe

    No full text
    Published online on JACoWCARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]
    corecore