4 research outputs found

    A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans.

    No full text
    The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime-boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.HIVA vaccines focus solely on the induction of cell-mediated immunity. The vaccines expressed a common immunogen, HIVA, which consists of consensus HIV-1 clade A Gag p24/p17 proteins fused to a string of clade A-derived epitopes recognized by cytotoxic T lymphocytes (CTLs). Volunteers' fresh peripheral blood mononuclear cells were tested for HIV-specific responses in a validated gamma interferon enzyme-linked immunospot (ELISPOT) assay using four overlapping peptide pools across the Gag domain and three pools of known CTL epitopes present in all of the HIVA protein. Both the DNA and the MVA vaccines alone and in a DNA prime-MVA boost combination were safe and induced HIV-specific responses in 14 out of 18, seven out of eight and eight out of nine volunteers, respectively. These results are very encouraging and justify further vaccine development

    Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses

    No full text
    Modified vaccinia Ankara (MVA) encoding the tumor antigen 5T4 (TroVax®) has been evaluated in an open label phase II study in metastatic colorectal cancer patients. The primary objective was to assess the safety and immunogenicity of TroVax injected before, during and after treatment with 5-fluorouracil, leukovorin and irinotecan. TroVax was administered to 19 patients with metastatic colorectal cancer. Twelve patients had blood samples taken following each of the six injections and were considered to be evaluable for assessment of immunological responses. Both antibody and cellular responses specific for the tumor antigen 5T4 and the viral vector MVA were monitored throughout the study. Administration of TroVax alongside chemotherapy was safe and well tolerated with no SAEs attributed to the vaccine and no enhancement of chemo-related toxicity. Of the 12 patients who were evaluable for assessment of immune responses, ten mounted 5T4-specific antibody responses with titers ranging from 10 to >5,000. IFNγ ELISPOT responses specific for 5T4 were detected in 11 patients with frequencies exceeding one in 1,000 PBMCs in five patients. Eight patients presented with elevated circulating CEA concentrations, six of whom showed decreases in excess of 50% during chemotherapy and four had CEA levels which remained stable for >1 month following completion of chemotherapy. Of the 19 intention to treat (ITT) patients, one had a CR, six had PRs and five had SD. Potent 5T4-specific cellular and/or humoral immune responses were induced in all 12 evaluable patients and were detectable in most patients during the period in which chemotherapy was administered. These data demonstrate that TroVax can be layered on top of chemotherapy regimens without any evidence of enhanced toxicity or reduced immunological or therapeutic efficacy. © 2007 Springer-Verlag
    corecore