131 research outputs found

    Structural and magnetic properties of Fe/ZnSe(001) interfaces

    Full text link
    We have performed first principles electronic structure calculations to investigate the structural and magnetic properties of Fe/ZnSe(001) interfaces. Calculations involving full geometry optimizations have been carried out for a broad range of thickness of Fe layers(0.5 monolayer to 10 monolayers) on top of a ZnSe(001) substrate. Both Zn and Se terminated interfaces have been explored. Total energy calculations show that Se segregates at the surface which is in agreement with recent experiments. For both Zn and Se terminations, the interface Fe magnetic moments are higher than the bulk bcc Fe moment. We have also investigated the effect of adding Fe atoms on top of a reconstructed ZnSe surface to explore the role of reconstruction of semiconductor surfaces in determining properties of metal-semiconductor interfaces. Fe breaks the Se dimer bond formed for a Se-rich (2x1) reconstructed surface. Finally, we looked at the reverse growth i.e. growth of Zn and Se atoms on a bcc Fe(001) substrate to investigate the properties of the second interface of a magnetotunnel junction. The results are in good agreement with the theoretical and experimental results, wherever available.Comment: 7 pages, 8 figures, accepted for publication in PR

    Spin injection and electric field effect in degenerate semiconductors

    Full text link
    We analyze spin-transport in semiconductors in the regime characterized by T∌<TFT\stackrel{<}{\sim}T_F (intermediate to degenerate), where TFT_F is the Fermi temperature. Such a regime is of great importance since it includes the lightly doped semiconductor structures used in most experiments; we demonstrate that, at the same time, it corresponds to the regime in which carrier-carrier interactions assume a relevant role. Starting from a general formulation of the drift-diffusion equations, which includes many-body correlation effects, we perform detailed calculations of the spin injection characteristics of various heterostructures, and analyze the combined effects of carrier density variation, applied electric field and Coulomb interaction. We show the existence of a degenerate regime, peculiar to semiconductors, which strongly differs, as spin-transport is concerned, from the degenerate regime of metals.Comment: Version accepted for publication in Phys. Rev.

    Oscillating magnetoresistance in diluted magnetic semiconductor barrier structures

    Full text link
    Ballistic spin polarized transport through diluted magnetic semiconductor (DMS) single and double barrier structures is investigated theoretically using a two-component model. The tunneling magnetoresistance (TMR) of the system exhibits oscillating behavior when the magnetic field are varied. An interesting beat pattern in the TMR and spin polarization is found for different NMS/DMS double barrier structures which arises from an interplay between the spin-up and spin-down electron channels which are splitted by the s-d exchange interaction.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices

    Get PDF
    We investigate the emission of multimodal polarized light from Light Emitting Devices due to spin-aligned carriers injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as non-radiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g-factor and magnetic field affect the polarization degree of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring spin-polarization degree of carrier injection into non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys. Rev.

    Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure

    Get PDF
    We present measurements of the transport spin polarization of Ni_xFe_{1-x} (0<x<1) using the recently-developed Point Contact Andreev Reflection technique, and compare them with our first principles calculations of the spin polarization for this system. Surpisingly, the measured spin polarization is almost composition-independent. The results clearly demonstrate that the sign of the transport spin polarization does not coincide with that of the difference of the densities of states at the Fermi level. Calculations indicate that the independence of the spin polarization of the composition is due to compensation of density of states and Fermi velocity in the s- and d- bands

    First-principles study of nucleation, growth, and interface structure of Fe/GaAs

    Full text link
    We use density-functional theory to describe the initial stages of Fe film growth on GaAs(001), focusing on the interplay between chemistry and magnetism at the interface. Four features appear to be generic: (1) At submonolayer coverages, a strong chemical interaction between Fe and substrate atoms leads to substitutional adsorption and intermixing. (2) For films of several monolayers and more, atomically abrupt interfaces are energetically favored. (3) For Fe films over a range of thicknesses, both Ga- and As-adlayers dramatically reduce the formation energies of the films, suggesting a surfactant-like action. (4) During the first few monolayers of growth, Ga or As atoms are likely to be liberated from the interface and diffuse to the Fe film surface. Magnetism plays an important auxiliary role for these processes, even in the dilute limit of atomic adsorption. Most of the films exhibit ferromagnetic order even at half-monolayer coverage, while certain adlayer-capped films show a slight preference for antiferromagnetic order.Comment: 11 two-column pages, 12 figures, to appear in Phys. Rev.

    Filtering spin with tunnel-coupled electron wave guides

    Full text link
    We show how momentum-resolved tunneling between parallel electron wave guides can be used to observe and exploit lifting of spin degeneracy due to Rashba spin-orbit coupling. A device is proposed that achieves spin filtering without using ferromagnets or the Zeeman effect.Comment: 4 pages, 4 figures, RevTex

    Surface Half-Metallicity of CrAs in the Zinc-Blende Structure

    Full text link
    The development of new techniques such as the molecular beam epitaxy have enabled the growth of thin films of materials presenting novel properties. Recently it was made possible to grow a CrAs thin-film in the zinc-blende structure. In this contribution, the full-potential screened KKR method is used to study the electronic and magnetic properties of bulk CrAs in this novel phase as well as the Cr and As terminated (001) surfaces. Bulk CrAs is found to be half-ferromagnetic for all three GaAs, AlAs and InAs experimental lattice constants with a total spin magnetic moment of 3 ÎŒB\mu_B. The Cr-terminated surface retains the half-ferromagnetic character of the bulk, while in the case of the As-termination the surface states destroy the gap in the minority-spin band.Comment: 4 pages, 2 figures, new text, new titl

    Spin Injection in a Ballistic Two-Dimensional Electron Gas

    Get PDF
    We explore electrically injected, spin polarized transport in a ballistic two-dimensional electron gas. We augment the Buettiker-Landauer picture with a simple, but realistic model for spin-selective contacts to describe multimode reservoir-to-reservoir transport of ballistic spin 1/2 particles. Clear and unambiguous signatures of spin transport are established in this regime, for the simplest measurement configuration that demonstrates them directly. These new effects originate from spin precession of ballistic carriers; they exhibit strong dependence upon device geometry and vanish in the diffusive limit. Our results have important implications for prospective ``spin transistor'' devices.Comment: Submitted to Phys. Rev. Let

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe
    • 

    corecore