11 research outputs found

    Ice-Cover and Ice-Ridge Contributions to the Freshwater Contents of Hudson Bay and Foxe Basin

    Get PDF
    Runoff and precipitation add 65 cm of fresh water to Hudson Bay annually. The ice cover does not account for a new contribution of fresh water over a one-year period; however, on weekly time scales, it contributes as much or more than runoff. The maximum thickness of ice averaged over the bay is 160 cm and represents a 140 cm layer of fresh water when sublimation is accounted for. This fresh water is twice as large as the amount annually brought in by runoff and precipitation and is added to the surface layer in the spring and removed from the surface layer in the fall. Freshwater budgets of Hudson Bay and Foxe Basin indicate up to 90% more ice is produced than indicated by ice thickness data. Part of this difference can be attributed to the ice accumulated in ice ridges, which for Hudson Bay accounts for 25 cm of ice and as much as 58 cm of ice for Foxe Basin, where extreme rough ice conditions occur.Key words: Hudson Bay, Foxe Basin, ice cover, ice ridges, freshwater contentMots clés: baie d’Hudson, bassin de Foxe, couverture de glace, crêtes de glace, volume d’eau douc

    Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea – 2009

    Get PDF
    This study was motivated by the potential development of offshore oil exploration leases in the Canadian Southern Beaufort Sea, an area within the Inuvialuit Settlement Region. Sea ice concentration, extent, motion, and thickness data are vital to the success of potential oil operations in this region, and relevant data cannot be gleaned from larger-scale hemispheric studies. We therefore undertook regionally specific sea ice analyses in the southern Beaufort Sea during the summer drilling season (July, August, and September) in 2009 and over the long-term (1996 – 2010). On average, the Canadian oil lease areas contain mostly old sea ice during the drilling season and have not experienced significant decreasing trends in total or old sea ice. The average sea ice motion in the region for the period was anti-cyclonic at 20 – 25 cm·s-1, acting to transport sea ice southward toward the lease areas. Summer 2009 was used as a case study of regional ice concentration, motion, and thickness and to compare September sea ice thickness measurements to data collected in April 2009. In the summer of 2009, old sea ice was the predominant ice type in the lease areas. Sea ice motion was anti-cyclonic and faster than the long-term average, reaching 60 cm·s-1 west of Banks Island and across the north end of the lease areas. September 2009 sea ice thickness (mean = 1.03 m, σ = 0.97 m) was modal about the 0.20 – 0.29 m thickness bin. The sea ice thickness distri­bution was spatially variable, with the thickest ice occurring at the north end of the study area, in an area dominated by high old ice concentrations. Ice thicknesses greater than 10 m (the upper limit our instruments could measure) were encountered. Thinner sea ice predominated at the periphery of the core Beaufort Sea multi-year pack. Near the oil lease areas, the sea ice thickness distributions were shifted left on the histogram in comparison to those farther north, resulting in a greater proportion of relatively thick sea ice due to the thermodynamic loss of thinner (< 1.5 m) first-year ice during its southward movement. After enduring a summer’s melt, however, this thicker ice at the south end of the study region had thinned in comparison to the ice at the north end.La présente étude a été motivée par la mise en valeur potentielle des concessions d’exploration pétrolière au large de la mer de Beaufort, dans la partie sud canadienne, un endroit qui fait partie de la région désignée des Inuvialuit. Les données relatives à la concentration, à l’étendue, au déplacement et à l’épaisseur de la glace de mer sont essentielles à la réussite de l’exploitation éventuelle du pétrole dans cette région, et les données pertinentes ne peuvent être dépouillées à partir d’études hémisphériques réalisées à grande échelle. Par conséquent, nous avons entrepris de faire des analyses particulièrement régionales de la glace de mer du sud de la mer de Beaufort pendant la saison de forage d’été (juillet, août et septembre) en 2009 de même que sur une plus longue période (1996-2010). En moyenne, les régions visées par les concessions pétrolières canadiennes renferment principalement de la vieille glace de mer pendant la saison de forage, et elles n’enregistrent pas d’importantes tendances à la baisse sur le plan de l’ensemble de la glace de mer ou de la vieille glace de mer. Dans la région, le déplacement moyen de la glace de mer pendant la période était anticyclonique à 20 25 cm·s-1, ce qui avait pour effet de transporter la glace de mer vers le sud et vers les concessions. L’été 2009 nous a servi d’étude de cas en matière de concentration, de déplacement et d’épaisseur de la glace régionale, et nous a permis de comparer les mesures de l’épaisseur de la glace de mer de septembre aux données recueillies en avril 2009. À l’été 2009, la vieille glace de mer représentait le type de glace prédominant dans les concessions. Le déplacement de la glace de mer était anticyclonique et se faisait plus vite que la moyenne à long terme, atteignant ainsi 60 cm·s-1 à l’ouest de l’île Banks et à la hauteur du nord de la zone de concessions. En septembre 2009, l’épaisseur de la glace de mer (moyenne = 1,03 m, σ = 0,97 m) était modale à la hauteur de la classe de l’épaisseur 0,20 – 0,29 m. La répartition de l’épaisseur de la glace de mer variait en fonction de l’emplacement, la glace la plus épaisse se trouvant du côté nord de la région étudiée, dans une zone dominée par de fortes concentrations de vieille glace. La glace atteignait des épaisseurs de plus de 10 m (la limite maximale que nos instruments pouvaient mesurer) par endroits. Une glace de mer plus mince prédominait la périphérie du noyau de la banquise pluriannuelle de la mer de Beaufort. Près de la zone de concessions pétrolières, les répartitions d’épaisseurs de glace de mer se sont déplacées vers la gauche sur l’histogramme comparativement à celles plus au nord, ce qui a donné une plus grande proportion de glace de mer relativement épaisse en raison de la perte thermodynamique de la glace plus mince de première année (< 1,5 m) pendant son déplacement vers le sud. Cependant, après avoir enduré la fonte d’un été, la glace plus épaisse du côté sud de la région à l’étude s’était amincie compara­tivement à la glace se trouvant du côté nord

    Late Winter Biogeochemical Conditions Under Sea Ice in the Canadian High Arctic

    Get PDF
    With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2) uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W) in the Canadian High Arctic. Results show relatively low surface water (1–10 m) nitrate (<1.3 µM) and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1), total alkalinity (mean±SD=2134±11.09 µmol kg−1) and under-ice pCO2sw (mean±SD=286±17 µatm). These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season
    corecore