4,390 research outputs found
Reversible electrowetting and trapping of charge: model and experiments
We derive a model for voltage-induced wetting, so-called electrowetting, from
the principle of virtual displacement. Our model includes the possibility that
charge is trapped in or on the wetted surface. Experimentally, we show
reversible electrowetting for an aqueous droplet on an insulating layer of 10
micrometer thickness. The insulator is coated with a highly fluorinated layer
impregnated with oil, providing a contact-angle hysteresis lower than 2
degrees. Analyzing the data with our model, we find that until a threshold
voltage of 240 V, the induced charge remains in the liquid and is not trapped.
For potentials beyond the threshold, the wetting force and the contact angle
saturate, in line with the occurrence of trapping of charge in or on the
insulating layer. The data are independent of the polarity of the applied
electric field, and of the ion type and molarity. We suggest possible
microscopic origins for charge trapping.Comment: 13 pages & 5 figures; the paper has been accepted for publication in
Langmui
Sustainable Soesterkwartier
The municipality of Amersfoort wants to construct an endurable and sustainable eco-town in the Soesterkwartier neighbourhood, by taking future climate change into account. The impact of climate change at the location of the proposed eco-town was studied by a literature review
Spin-dependent transport in metal/semiconductor tunnel junctions
This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate spin-polarized carriers. A transport model is presented that takes account of carrier capture in the semiconductor surface states, and describes the semiconductor surface in terms of a spin-dependent energy distribution function. The so-called surface spin-splitting can be calculated from the balance of the polarized electron and hole flow in the semiconductor subsurface region, the polarized tunnelling current across the tunnel barrier between the magnetic material and the semiconductor surface, and the spin relaxation at the semiconductor surface.
Measurements are presented of the circular-polarization-dependent photocurrent (the so-called helicity asymmetry) in thin-film tunnel junctions of Co/Al2O3/GaAs. In the absence of a tunnel barrier, the helicity asymmetry is caused by magneto-optical effects (magnetic circular dichroism). In the case where a tunnel barrier is present, the data cannot be explained by magneto-optical effects alone; the deviations provide evidence that spin-polarized tunnelling due to optical spin orientation occurs. In Co/τ-MnAl/AlAs/GaAs junctions no deviations from the magneto-optical effects are observed, most probably due to the weak spin polarization of τ-MnAl along the tunnelling direction; the latter is corroborated by bandstructure calculations. Finally, the application of photoexcited GaAs for spin-polarized tunnelling in a scanning tunnelling microscope is discussed.
Observation of Sommerfeld precursors on a fluid surface
We report the observation of two types of Sommerfeld precursors (or
forerunners) on the surface of a layer of mercury. When the fluid depth
increases, we observe a transition between these two precursor surface waves in
good agreement with the predictions of asymptotic analysis. At depths thin
enough compared to the capillary length, high frequency precursors propagate
ahead of the ''main signal'' and their period and amplitude, measured at a
fixed point, increase in time. For larger depths, low frequency ''precursors''
follow the main signal with decreasing period and amplitude. These behaviors
are understood in the framework of the analysis first introduced for linear
transient electromagnetic waves in a dielectric medium by Sommerfeld and
Brillouin [1].Comment: to be published in Physical Review Letter
- …