4,811 research outputs found

    An Investigation into the Geometry of Seyfert Galaxies

    Get PDF
    We present a new method for the statistical investigation into the distributions of the angle beta between the radio axis and the normal to the galactic disk for a sample of Seyfert galaxies. We discuss how further observations of the sample galaxies can strengthen the conclusions. Our data are consistent with the hypothesis that AGN jets are oriented randomly in space, independent of the position of the plane of the galaxy. By making the simple assumption that the Standard Model of AGN holds, with a universal opening angle of the thick torus of phi_c, we demonstrate a statistical method to obtain an estimate of phi_c. Our data are not consistent with the simple-minded idea that Seyfert 1s and Seyfert 2s are differentiated solely by whether or not our line of sight lies within some fixed angle of the jet axis. Our result is significant on the 2 sigma level and can thus be considered only suggestive, not conclusive. A complete sample of Seyfert galaxies selected on an isotropic property is required to obtain a conclusive result.Comment: 13 pages, Tex, 5 Postscript figures. Accepted Ap

    The Exciting Lives of Giant Molecular Clouds

    Full text link
    We present a detailed study of the evolution of GMCs in a galactic disc simulation. We follow individual GMCs (defined in our simulations by a total column density criterion), including their level of star formation, from their formation to dispersal. We find the evolution of GMCs is highly complex. GMCs often form from a combination of smaller clouds and ambient ISM, and similarly disperse by splitting into a number of smaller clouds and ambient ISM. However some clouds emerge as the result of the disruption of a more massive GMC, rather than from the assembly of smaller clouds. Likewise in some cases, clouds accrete onto more massive clouds rather than disperse. Because of the difficulty of determining a precursor or successor of a given GMC, determining GMC histories and lifetimes is highly non-trivial. Using a definition relating to the continuous evolution of a cloud, we obtain lifetimes typically of 4-25 Myr for >10^5 M⊙_{\odot} GMCs, over which time the star formation efficiency is about 1 %. We also relate the lifetime of GMCs to their crossing time. We find that the crossing time is a reasonable measure of the actual lifetime of the cloud, although there is considerable scatter. The scatter is found to be unavoidable because of the complex and varied shapes and dynamics of the clouds. We study cloud dispersal in detail and find both stellar feedback and shear contribute to cloud disruption. We also demonstrate that GMCs do not behave as ridge clouds, rather massive spiral arm GMCs evolve into smaller clouds in inter-arm spurs.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    The observable effects of tidally induced warps in protostellar discs

    Full text link
    We consider the response of a protostellar disc to a tidally induced warp and the resultant changes in the spectral energy distribution (SED). We argue that for typical protostellar disc parameters the warp is communicated through the disc in a wave-like fashion. We find that the main effects of the warp tend to be at large radii (greater than 30 AU) and, for sufficiently small viscosity, can be quite long-lived. This can result in non-uniform illumination of the disc at these radii and can induce significant changes to the SED at wavelengths greater than 100 microns.Comment: 7 pages, 9 figures. Accepted by MNRA

    Radiation-Driven Warping: The Origin of Warps and Precession in Accretion Disks

    Get PDF
    A geometrically thin, optically thick, warped accretion disk with a central source of luminosity is subject to non-axisymmetric forces due to radiation pressure; the resulting torque acts to modify the warp. In a recent paper, \cite{pri96} used a local analysis to show that initially planar accretion disks are unstable to warping driven by radiation torque. Here we extend this work with a global analysis of the stable and unstable modes. We confirm Pringle's conclusion that thin centrally-illuminated accretion disks are generically unstable to warping via this mechanism; we discuss the time-evolution and likely steady-state of such systems and show specifically that this mechanism can explain the warping of the disk of water masers in NGC 4258 and the 164-day precession period of the accretion disk in SS 433. Radiation-driven warping and precession provides a robust mechanism for producing warped, precessing accretion disks in active galactic nuclei and X-ray binary systems.Comment: 16 pages, latex, 3 figure

    Are Intervention-Design Characteristics More Predictive than Baseline Participant Characteristics on Participant Attendance to a Paediatric, Community Weight Management Programme?

    Get PDF
    BACKGROUND: Approximately 50% of participants complete a paediatric weight management programme, yet the predictors of attendance and dropout are inconsistent. This study investigates subject and intervention-design characteristics associated with attendance at a group based, family weight management programme. SETTING AND SUBJECTS: Secondary data analysis of 2948 subjects (Age 10.4±2.8 years, BMI 26.0±5.7kg/m2, Standardised BMI (BMI SDS) 2.48±0.87, White 70.3%) from 244 MoreLife (UK) programmes. Subjects attend weekly for 10-12 weeks, sessions last 2-3 hours. Sessions include lifestyle guidance and physical activity. METHOD: Subject characteristics (demographics, psychological (body satisfaction & self-esteem) and sedentary behaviour) were gathered at first contact and BMI SDS was noted weekly. Intervention-design characteristics were recorded (year, length (weeks), group size, age segregation and day of session). Attendance was calculated as total number of sessions attended (%). Multivariate linear regression examined predictors of attendance and multiple imputation countered missing data. RESULTS: Average attendance was 59.4%±29.3%. Baseline subject characteristics were ‘poor’ predictors of attendance. Intervention year, group size and day of session significantly predicted attendance (Tables 1 & 2). Yet, the most predictive marker of attendance was a change in BMI SDS during the programme (B = -0.38, 95% CI = -0.43 - -0.33). CONCLUSION: A reduction in BMI was seen to predict greater attendance. However, baseline subject characteristics were weakly associated with attendance, refuting past findings. Dominant intervention characteristics (large groups, weekend sessions and recent delivery) predicted lower attendance. Future programmes may be better informed

    On the role of numerical diffusivity in MHD simulations of global accretion disc dynamos

    Full text link
    Observations, mainly of outbursts in dwarf novae, imply that the anomalous viscosity in highly ionized accretion discs is magnetic in origin, and requires that the plasma β∼1\beta \sim 1. Until now most simulations of the magnetic dynamo in accretion discs have used a local approximation (known as the shearing box). While these simulations demonstrate the possibility of a self-sustaining dynamo, the magnetic activity generated in these models saturates at β≫1\beta \gg 1. This long-standing discrepancy has previously been attributed to the local approximation itself. There have been recent attempts at simulating magnetic activity in global accretion discs with parameters relevant to the dwarf novae. These too find values of β≫1\beta \gg 1. We speculate that the tension between these models and the observations may be caused by numerical magnetic diffusivity. As a pedagogical example, we present exact time-dependent solutions for the evolution of weak magnetic fields in an incompressible fluid subject to linear shear and magnetic diffusivity. We find that the maximum factor by which the initial magnetic energy can be increased depends on the magnetic Reynolds number as Rm2/3{\mathcal R}_{\rm m}^{2/3}. We estimate that current global numerical simulations of dwarf nova discs have numerical magnetic Reynolds numbers around 6 orders of magnitude less than the physical value found in dwarf nova discs of Rm∼1010{\mathcal R}_{\rm m} \sim 10^{10}. We suggest that, given the current limitations on computing power, expecting to be able to compute realistic dynamo action in observable accretion discs using numerical MHD is, for the time being, a step too far.Comment: 20 pages, 6 figures, accepted for publication in the Journal of Plasma Physic
    • …
    corecore