22 research outputs found

    Establishment of a novel CCR5 and CXCR4 expressing CD4(+ )cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists

    Get PDF
    BACKGROUND: CCR5 and CXCR4 are the two main coreceptors essential for HIV entry. Therefore, these chemokine receptors have become important targets in the search for anti-HIV agents. Here, we describe the establishment of a novel CD4(+ )cell line, U87.CD4.CCR5.CXCR4, stably expressing both CCR5 and CXCR4 at the cell surface. RESULTS: In these cells, intracellular calcium signalling through both receptors can be measured in a single experiment upon the sequential addition of CXCR4- and CCR5-directed chemokines. The U87.CD4.CCR5.CXCR4 cell line reliably supported HIV-1 infection of diverse laboratory-adapted strains and primary isolates with varying coreceptor usage (R5, X4 and R5/X4) and allows to investigate the antiviral efficacy of combined CCR5 and CXCR4 blockade. The antiviral effects recorded in these cells with the CCR5 antagonist SCH-C and the CXCR4 antagonist AMD3100 were similar to those noted in the single CCR5- or CXCR4-transfected U87.CD4 cells. Furthermore, the combination of both inhibitors blocked the infection of all evaluated HIV-1 strains and isolates. CONCLUSIONS: Thus, the U87.CD4.CCR5.CXCR4 cell line should be useful in the evaluation of CCR5 and CXCR4 antagonists with therapeutic potential and combinations thereof

    Modifying Rap1-signalling by targeting Pde6δ is neuroprotective in models of Alzheimer’s disease

    Get PDF
    Background: Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer's disease pathology arid progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer's disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential. Methods: Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6 delta normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer's disease. Results: The newly identified inhibitors of the Rap1-Pde6 delta interaction counteract AD phenotypes, by reconfiguring Rapt signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or invivo. Thus, modulation of Rap1 by Pde6 delta accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders. Conclusion: Targeting the Pde6 delta-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer's disease

    HIV chemokine receptor inhibitors as novel anti-HIV drugs

    No full text
    The chemokine receptors CXCR4 and CCR5 are the main coreceptors used by the T-cell-tropic (CXCR4-using, X4) and macrophage-tropic (CCR5-using, R5) HIV-1 strains, respectively, for entering their CD4+ target cells. In this review, we focus on the function of these chemokine receptors in HIV infection and their role as novel targets for viral inhibition. Besides some modified chemokines with antiviral activity, several low-molecular weight CCR5 and CXCR4 antagonistic compounds have been described with potent antiviral activity. The best CXCR4 antagonists described are the bicyclam derivatives, which consistently block X4 but also R5/X4 viral replication in PBMCs. We believe that chemokine receptor antagonists will become important new antiviral drugs to combat AIDS. Both CXCR4 and CCR5 chemokine receptor inhibitors will be needed in combination and even in combinations of antiviral drugs that also target other aspects of the HIV replication cycle to obtain optimum antiviral therapeutic effects.status: publishe

    Derailed Intraneuronal Signalling Drives Pathogenesis in Sporadic and Familial Alzheimer’s Disease

    No full text
    Although a wide variety of genetic and nongenetic Alzheimer’s disease (AD) risk factors have been identified, their role in onset and/or progression of neuronal degeneration remains elusive. Systematic analysis of AD risk factors revealed that perturbations of intraneuronal signalling pathways comprise a common mechanistic denominator in both familial and sporadic AD and that such alterations lead to increases in Aβ oligomers (Aβo) formation and phosphorylation of TAU. Conversely, Aβo and TAU impact intracellular signalling directly. This feature entails binding of Aβo to membrane receptors, whereas TAU functionally interacts with downstream transducers. Accordingly, we postulate a positive feedback mechanism in which AD risk factors or genes trigger perturbations of intraneuronal signalling leading to enhanced Aβo formation and TAU phosphorylation which in turn further derange signalling. Ultimately intraneuronal signalling becomes deregulated to the extent that neuronal function and survival cannot be sustained, whereas the resulting elevated levels of amyloidogenic Aβo and phosphorylated TAU species self-polymerizes into the AD plaques and tangles, respectively

    Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4

    Get PDF
    AbstractThis study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and chemotaxis in a concentration-dependent manner in different cell types. Also, AMD3100 inhibited stromal cell-derived factor (SDF)-1-induced endocytosis of CXCR4, but did not affect phorbol ester-induced receptor internalization. Importantly, AMD3100 by itself was unable to elicit intracellular calcium fluxes, to induce chemotaxis, or to trigger CXCR4 internalization, indicating that the compound does not act as a CXCR4 agonist. Specific small-molecule CXCR4 antagonists such as AMD3100 may play an important role in the treatment of human immunodeficiency virus infections and many other pathological processes that are dependent on SDF-1/CXCR4 interactions (e.g. rheumatoid arthritis, atherosclerosis, asthma and breast cancer metastasis)

    Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    Get PDF
    AbstractThe interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp171 and Asp262. We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp262 strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp262 of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4

    Modest Human Immunodeficiency Virus Coreceptor Function of CXCR3 Is Strongly Enhanced by Mimicking the CXCR4 Ligand Binding Pocket in the CXCR3 Receptor

    No full text
    The chemokine receptor CXCR3 can exhibit weak coreceptor function for several human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical isolates. These viruses produced microscopically visible cytopathicity in U87.CD4.CXCR3 cell cultures, whereas untransfected (CXCR3-negative) U87.CD4 cells remained uninfected. Depending on the particular virus, the coreceptor efficiency of CXCR3 was 100- to >10,000-fold lower compared to that of CXCR4. A CXCR3 variant carrying the CXCR4 binding pocket was constructed by simultaneous lysine-to-alanine and serine-to-glutamate substitutions at positions 300 and 304 of the CXCR3 receptor. This mutant receptor (CXCR3[K300A, S304E]) showed markedly enhanced HIV coreceptor function compared to the wild-type receptor (CXCR3[WT]). Moreover, the CXCR4 antagonist AMD3100 exhibited antagonistic and anti-HIV activities in U87.CD4.CXCR3[K300A, S304E] cells but not in U87.CD4.CXCR3[WT] cells

    Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions

    No full text
    Amorphous silica nanoparticles (SiO₂-NPs) have found broad applications in industry and are currently intensively studied for potential uses in medical and biomedical fields. Several studies have reported cytotoxic and inflammatory responses induced by SiO₂-NPs in different cell types. The present study was designed to examine the association of oxidative stress markers with SiO₂-NP induced cytotoxicity in human endothelial cells. We used pure monodisperse amorphous silica nanoparticles of two sizes (16 and 60 nm; S16 and S60) and a positive control, iron-doped nanosilica (16 nm; SFe), to study the generation of hydroxyl radicals (HO·) in cellular-free conditions and oxidative stress in cellular systems. We investigated whether SiO₂-NPs could influence intracellular reduced glutathione (GSH) and oxidized glutathione (GSSG) levels, increase lipid peroxidation (malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) concentrations), and up-regulate heme oxygenase-1 (HO-1) mRNA expression in the studied cells. None of the particles, except SFe, produced ROS in cell-free systems. We found significant modifications for all parameters in cells treated with SFe nanoparticles. At cytotoxic doses of S16 (40-50 μg/mL), we detected weak alterations of intracellular glutathione (4 h) and a marked induction of HO-1 mRNA (6 h). Cytotoxic doses of S60 elicited similar responses. Preincubation of cells being exposed to SiO₂-NPs with an antioxidant (5 mM N-acetylcysteine, NAC) significantly reduced the cytotoxic activity of S16 and SFe (when exposed up to 25 and 50 μg/mL, respectively) but did not protect cells treated with S60. Preincubation with NAC significantly reduced HO-1 mRNA expression in cells treated with SFe but did not have any effect on HO-1 mRNA level in cell exposed to S16 and S60. Our study demonstrates that the chemical composition of the silica nanoparticles is a dominant factor in inducing oxidative stress.status: publishe
    corecore