35 research outputs found

    Parametric design and multiobjective optimization of containerships

    Get PDF
    The introduction of the energy efficiency design index (EEDI) and ballast water treatment regulations by the International Maritime Organization, the fluctuation of fuel price levels, along with the continuous endeavor of the shipping industry for economic growth and profits has led the shipbuilding industry to explore new and cost-efficient designs for various types of merchant ships. In this respect, proper use of modern computer-aided design/computer-aided engineering systems (CAD/CAE) extends the design space, while generating competitive designs with innovative features in short lead time. The present article deals with the parametric design and optimization of containerships. The developed methodology, which is based on the CAESES/Friendship-Framework software system, is demonstrated by the conceptual design and multiobjective optimization of a midsized, 6500-TEU containership. The methodology includes a complete parametric model of the ship’s external and internal geometry and the development and coding of all models necessary for the determination of the design constraints and the design efficiency indicators, which are used for the evaluation of parametrically generated designs. Such indicators defining the objective functions of a multiobjective optimization problem are herein the EEDI, the required freight rate, the ship’s zero ballast container box capacity, and the ratio of the above to below deck number of containers.The set-up multiobjective optimization problem is solved by use of the genetic algorithms, and clear Pareto fronts are generated. Identified optimal design proves very competitive compared with the standard containership designs in the market

    Parametric design and holistic optimisation of post-panamax containerships

    Get PDF
    The fluctuation of fuel price levels, along with the continuous endeavour of the shipping industry for economic growth and profits has led the shipbuilding industry to explore new designs for various types of merchant ships. Moreover, the introduction of new regulations by the IMO has added further constraints to the ship design process. In this respect, proper use of modern CAD/CAE systems extends the design space, while generating competitive designs in short lead time. This study deals with the parametric design and holistic optimisation of a post-panamax containership. The methodology includes a complete parametric model of a containership’s external and internal geometry, as well as the development and coding of all tools required for the determination of both the design constraints and the efficiency indicators, which are used for evaluating the parametrically generated designs. The second-generation intact stability criteria are taken into consideration in the optimisation process. The set-up multi-objective optimisation problem is solved by use of the genetic algorithms and clear Pareto fronts are generated

    Parametric design and multi-objective optimisation of containerships

    Get PDF
    The introduction of new regulations by the International Maritime Organisation, the fluctuation of fuel price levels, along with the continuous endeavour of the shipping industry for economic growth and profits has led the shipbuilding industry to explore new and cost-efficient designs for various types of merchant ships. In this respect, proper use of modern computer-aided design/computer-aided engineering systems (CAD/CAE) extends the design space, while generating competitive designs in short lead time. The present paper deals with the parametric design and optimisation of containerships. The developed methodology, which is based on the CAESES/Friendship-Framework software system, is demonstrated by the conceptual design and multi-objective optimisation of a midsized, 6,500 TEU containership. The methodology includes a complete parametric model of the ship’s external and internal geometry and the development and coding of all models necessary for the determination of the design constraints and the design efficiency indicators, which are used for the evaluation of parametrically generated designs. Such indicators defining the objective functions of a multi-objective optimisation problem are herein the energy efficiency design index, the required freight rate, the ship’s zero ballast container box capacity and the ratio of the above to below deck number of containers. The set-up multi-objective optimisation problem is solved by use of the genetic algorithms

    Risk assessment of a battery-powered high-speed ferry using formal safety assessment

    Get PDF
    Fully electric ships have been widely developed, investigated and evaluated by the maritime industry as a potential solution to respond to the emissions control required according to the International Maritime Organization (IMO). This study aims at presenting a novel approach to evaluate the safety level of a battery-powered high speed catamaran. Following the Formal Safety Assessment procedure, the risk assessment of the considered ship was conducted leading to the identification of the involved hazards along with the estimation of their frequency and consequences thus allowing for the identification of the most severe hazards. Fault tree analysis is carried out for and the identified top events followed by an event tree analysis to estimate the risk and safety level of the vessel. Furthermore, a cost-benefit assessment is conducted to evaluate the financial impact of selected risk control options. The derived results indicate that the application of battery power systems for high speed ferries exhibits low and acceptable accident frequencies. It is also supported the current regulation to carry out mandatory risk assessment for battery-powered ships

    Logistics optimisation of a fast catamaran ferry – a selection of optimal route considering battery weight and cost

    Get PDF
    A study for the decarbonisation of a fast catamaran ferry equipped with a battery-powered propulsion system is presented. This paper identifies the Pareto optimal designs that fulfil the demanding endurance-battery weight-charging time-draught-wake wash limitations in the route. The energy requirement, the weight and cost of the battery packs are estimated

    Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Get PDF
    Excessive production of reactive oxygen species (ROS) may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP) from tert-butyl hydroperoxide- (tBHP-) induced oxidative stress in endothelial cells (EA.hy926) were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH) and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (CARB), and oxidized glutathione (GSSG) were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress

    Hydrogen vs batteries : comparative safety assessments for a high-speed passenger ferry

    Get PDF
    Batteries and hydrogen constitute two of the most promising solutions for decarbonising international shipping. This paper presents the comparison between a battery and a proton-exchange membrane hydrogen fuel cell version of a high-speed catamaran ferry with a main focus on safety. The systems required for each version are properly sized and fitted according to the applicable rules, and their impact on the overall design is discussed. Hazards for both designs were identified; frequency and consequence indexes for them were input qualitatively, following Novel Technology Qualification and SOLAS Alternative Designs and Arrangements, while certain risk control options were proposed in order to reduce the risks of the most concerned accidental events. The highest ranked risks were analysed by quantitative risk assessments in PyroSim software. The gas dispersion analysis performed for the hydrogen version indicated that it is crucial for the leakage in the fuel cell room to be stopped within 1 s after being detected to prevent the formation of explosive masses under full pipe rupture of 33 mm diameter, even with 120 air changes per hour. For the battery version, the smoke/fire simulation in the battery room indicated that the firefighting system could achieve a 30% reduction in fire duration, with firedoors closed and ventilation shut, compared to the scenario without a firefighting system

    Numerical investigation of the resistance of a zero‐emission full‐scale fast catamaran in shallow water

    Get PDF
    This paper numerically investigates the resistance at full-scale of a zero-emission, highspeed catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical methods are validated by two means: (a) Comparison with available model tests; (b) a blind validation using two different flow solvers. The resistance, sinkage, and trim of the catamaran, as well as the wave pattern, longitudinal wave cuts and crossflow fields, are examined. The total resistance curve in deep water shows a continuous increase with the Froude number, while in shallow water, a hump is witnessed near the critical speed. This difference is mainly caused by the pressure component of total resistance, which is significantly affected by the interaction between the wave systems created by the demihulls. The pressure resistance in deep water is maximised at a Froude number around 0.58, whereas the peak in shallow water is achieved near the critical speed (Froude number ≈ 0.3). Insight into the underlying physics is obtained by analysing the wave creation between the demihulls. Profoundly different wave patterns within the inner region are observed in deep and shallow water. Specifically, in deep water, both crests and troughs are generated and moved astern as the increase of the Froude number. The maximum pressure resistance is accomplished when the secondary trough is created at the stern, leading to the largest trim angle. In contrast, the catamaran generates a critical wave normal to the advance direction in shallow water, which significantly elevates the bow and creates the highest trim angle, as well as pressure resistance. Moreover, significant wave elevations are observed between the demihulls at supercritical speeds in shallow water, which may affect the decision for the location of the wet deck

    TrAM - Transport : advanced and modular

    Get PDF
    Europe has taken a leading role in the international effort for a drastic reduction of greenhouse gas (GHG) emissions. Transport systems play a crucial role in this effort and the competition among the various transportation modes for the shrinkage of their environmental footprint, is mounting. Maintaining its focus on sustainability, Europe is seeking to produce transport solutions with a cost effective and environmentally friendly life cycle, integrated in its smart cities. This is what the H2020 funded project "TrAM-Transport: Advanced and Modular" aims to offer (https://tramproject.eu/). It is validating a concept for waterborne transport by implementing state-of-the-art "Industry 4.0" holistic ship design and production methods, for fully electrical vessels, operating at reasonably high speed in the vicinity of urban areas. The project will lead to significant lower construction costs and reduction in engineering hours for new zero emission fast vessels. Three different catamarans will be designed by implementing the developed methods, while one of them will be undergoing detailed design and physical model testing, prior to its construction and start of operation in Stavanger/Norway before the end of the TrAM project in 2022. The paper outlines the objectives, first R&D outcomes and the main challenges of the project
    corecore