36 research outputs found

    Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions

    Get PDF
    The effect of interfacial slip on steady-state and time-periodic flows of monatomic liquids is investigated using non-equilibrium molecular dynamics simulations. The fluid phase is confined between atomically smooth rigid walls, and the fluid flows are induced by moving one of the walls. In steady shear flows, the slip length increases almost linearly with shear rate. We found that the velocity profiles in oscillatory flows are well described by the Stokes flow solution with the slip length that depends on the local shear rate. Interestingly, the rate dependence of the slip length obtained in steady shear flows is recovered when the slip length in oscillatory flows is plotted as a function of the local shear rate magnitude. For both types of flows, the friction coefficient at the liquid-solid interface correlates well with the structure of the first fluid layer near the solid wall.Comment: 31 pages, 11 figure

    Diffusion of a Janus nanoparticle in an explicit solvent: A molecular dynamics simulation study

    Get PDF
    Molecular dynamics simulations are carried out to study the translational and rotational diffusion of a single Janus particle immersed in a dense Lennard-Jones fluid. We consider a spherical particle with two hemispheres of different wettability. The analysis of the particle dynamics is based on the time-dependent orientation tensor, particle displacement, as well as the translational and angular velocity autocorrelation functions. It was found that both translational and rotational diffusion coefficients increase with decreasing surface energy at the nonwetting hemisphere, provided that the wettability of the other hemisphere remains unchanged. We also observed that in contrast to homogeneous particles, the nonwetting hemisphere of the Janus particle tends to rotate in the direction of the displacement vector during the rotational relaxation time.Comment: Web reference added for animations:http://www.wright.edu/~nikolai.priezjev/janus/janus.htm

    Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces

    Get PDF
    Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to the power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of surface induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.Comment: 27 pages, 11 figure

    Cluster Monte Carlo Simulations of the Nematic--Isotropic Transition

    Full text link
    We report the results of simulations of the Lebwohl-Lasher model of the nematic-isotropic transition using a new cluster Monte Carlo algorithm. The algorithm is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size, obeying finite size scaling for systems of size greater than 35. We thus obtain an estimate of the value of the transition temperature in the thermodynamic limit.Comment: 4 figure

    Relaxation of surface tension in the liquid-solid interfaces of Lennard-Jones liquids

    Get PDF
    We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The main result is that the relaxation time is found to be almost independent of the molecular structures and viscosity of the liquids (at seventy-fold change) used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of our results for the modelling of dynamic wetting processes and interpretation of dynamic contact angle data are discussed

    Non-Isothermal Model for Nematic Spherulite Growth

    Get PDF
    A computational study of the growth of two-dimensional nematic spherulites in an isotropic phase was performed using a Landau-de Gennes type quadrupolar ensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). An energy balance, taking anisotropy into account, was derived and incorporated into the time-dependent model. Growth laws were determined for two different spherulite morphologies of the form tn, with and without the inclusion of thermal effects. Results show that incorporation of the thermal energy balance correctly predicts the transition of the growth law exponent from the volume driven regime (n=1) to the thermally limited regime (approaching n=0.5), agreeing well with experimental observations. An interfacial nemato-dynamic model is used to gain insight into the interactions that result in the progression of different spherulite growth regimes
    corecore