54 research outputs found

    Lipoprotein lipase expression in chronic lymphocytic leukemia: new insights into leukemic progression

    Get PDF
    Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. Due to its catalytic activity, LPL is involved in metabolic pathways exploited by various solid and hematologic malignancies to provide an extra energy source to the tumor cell. We and others described a link between the expression of LPL in the tumor cell and a poor clinical outcome of patients suffering Chronic Lymphocytic Leukemia (CLL). This leukemia is characterized by a slow accumulation of mainly quiescent clonal CD5 positive B cells that infiltrates secondary lymphoid organs, bone marrow and peripheral blood. Despite LPL being found to be a reliable molecular marker for CLL prognosis, its functional role and the molecular mechanisms regulating its expression are still matter of debate. Herein we address some of these questions reviewing the current state of the art of LPL research in CLL and providing some insights into where currently unexplored questions may lead t

    Compartment and cell-type specific hypoxia responses in the developing Drosophila brain

    Get PDF
    Material suplementario: https://bio.biologists.org/lookup/doi/10.1242/bio.053629.supplementalEnvironmental factors such as the availability of oxygen are instructive cues that regulate stem cell maintenance and differentiation. We used a genetically encoded biosensor to monitor the hypoxic state of neural cells in the larval brain of Drosophila. The biosensor reveals brain compartment and cell-type specific levels of hypoxia. The values correlate with differential tracheolation that is observed throughout development between the central brain and the optic lobe. Neural stem cells in both compartments show the strongest hypoxia response while intermediate progenitors, neurons and glial cells reveal weaker responses. We demonstrate that the distance between a cell and the next closest tracheole is a good predictor of the hypoxic state of that cell. Our study indicates that oxygen availability appears to be the major factor controlling the hypoxia response in the developing Drosophila brain and that cell intrinsic and cell-type specific factors contribute to modulate the response in an unexpected manner.ANII: FCE_3_2013_1_10073

    Ciência Aberta: desafios e oportunidades para o Uruguai e o Sul Global

    Get PDF
    Uruguay, al igual que más de 190 países miembros, ha suscrito la Recomendación de Ciencia Abierta de Unesco que se ha aprobado en noviembre de 2021. La ciencia abierta es un ecosistema de procesos interconectados construido sobre distintos movimientos: acceso abierto, datos abiertos, código abierto e investigación abierta reproducible, entre otros, cuyo objetivo es hacer las investigaciones científicas, datos y divulgación accesibles e inclusivos para todos los niveles de la sociedad. La implementación de políticas de ciencia abierta requiere equilibrar cuidadosamente sus costos y beneficios. Las experiencias de algunos países parecen ser exitosas, aunque la factibilidad de algunos aspectos plantea dudas en la comunidad científica. Los países del Sur Global tienen una oportunidad para posicionarse y beneficiarse de esta transición, pero deben estar un paso adelante y ser parte de su construcción. En este trabajo se revisan los principales conceptos para la implementación de un sistema de ciencia abierta y se realizan algunas consideraciones sobre el sistema de evaluación científica actual con perspectiva de futuro. Finalmente, se evalúan algunas dificultades que pueden enfrentar los países del Sur Global y se proponen posibles soluciones.O Uruguai, como mais de 190 países membros, assinou a Recomendação da UNESCO de Ciência Aberta, aprovada em novembro de 2021. Ciência Aberta é um ecossistema de processos interconectados construídos em diferentes movimentos, Acesso Aberto, Dados Abertos, Código Aberto e Pesquisa Aberta Reproduzível, entre outros, cujo objetivo é tornar a pesquisa, os dados e a divulgação científicos acessíveis e inclusivos em todos os níveis da sociedade. A implementação de políticas de Ciência Aberta requer um equilíbrio cuidadoso de seus custos e benefícios. As experiências de alguns países parecem bem-sucedidas, embora a viabilidade de alguns aspectos suscite dúvidas na comunidade científica. Os países do Sul Global têm a oportunidade de se posicionar e se beneficiar dessa transição, mas devem estar um passo à frente e fazer parte de sua construção. Neste trabalho são revisados os principais conceitos para a implementação de um sistema de Ciência Aberta e feitas algumas considerações sobre o atual sistema de avaliação científica com uma perspectiva futura. Por fim, são avaliadas algumas dificuldades que os países do Sul Global podem enfrentar e propostas possíveis soluções

    Application of the DNA-Specific stain methyl green in the fluorescent labeling of embryos

    Get PDF
    Methyl green has long been known as a histological stain with a specific affinity for DNA, although its fluorescent properties have remained unexplored until recently. In this article, we illustrate the method for preparing a methyl green aqueous stock solution, that when diluted can be used as a very convenient fluorescent nuclear label for fixed cells and tissues. Easy procedures to label whole zebrafish and chick embryos are detailed, and examples of images obtained shown. Methyl green is maximally excited by red light, at 633 nm, and emits with a relatively sharp spectrum that peaks at 677 nm. It is very inexpensive, non-toxic, highly stable in solution and very resistant to photobleaching when bound to DNA. Its red emission allows for unaltered high resolution scanning confocal imaging of nuclei in thick specimens. Finally, this methyl green staining protocol is compatible with other cell staining procedures, such as antibody labeling, or actin filaments labeling with fluorophoreconjugated phalloidi

    Multi-compartment and multi-host vector suite for recombinant protein expression and purification

    Get PDF
    Recombinant protein expression has become an invaluable tool in basic and applied research. The accumulated knowledge in this field allowed the expression of thousands of protein targets in a soluble, pure, and homogeneous state, essential for biochemical and structural analyses. A lot of progress has been achieved in the last decades, where challenging proteins were expressed in a soluble manner after evaluating different parameters such as host, strain, and fusion partner or promoter strength, among others. In this regard, we have previously developed a vector suite that allows the evaluation of different promoters and solubility enhancer-proteins, through an easy and efficient cloning strategy. Nonetheless, the proper expression of many targets remains elusive, requiring, for example, the addition of complex post-translation modifications and/or passage through specialized compartments. In order to overcome the limitations found when working with a single subcellular localization and a single host type, we herein expanded our previously developed vector suite to include the evaluation of recombinant protein expression in different cell compartments and cell hosts. In addition, these vectors also allow the assessment of alternative purification strategies for the improvement of target protein yields

    S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression

    Get PDF
    Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL

    Expression, purification, and characterization of bovine leukemia virus-like particles produced in Drosophila S2 cells

    Get PDF
    Material complementario: https://www.frontiersin.org/articles/10.3389/fviro.2021.756559/full#supplementary-materialBovine leukemia virus (BLV) is an oncogenic deltaretrovirus that infects cattle worldwide. In Uruguay, it is estimated that more than 70% of dairy cattle are infected, causing serious economic losses due to decreased milk production, increased calving interval, and livestock losses due to lymphosarcoma. Several attempts to develop vaccine candidates that activate protective immune responses against BLV were performed, but up to date, there is no vaccine that ensures efficient protection and/or decreased viral transmission. The development and application of new vaccines that effectively control BLV infection represent amajor challenge for countries with a high prevalence of infection. In this study, we generated two Drosophila melanogaster S2 stable cell lines capable of producing BLV virus-like particles (BLV-VLPs). One of them, BLV-VLP1, expressed both Gag and Env wild-type (Envwt) full-length proteins, whereas BLV-VLP2 contain Gag together with a mutant form of Env non-susceptible to proteolytic maturation by cellular furin type enzymes (EnvFm).We showed that Envwt is properly cleaved by cellular furin, whereas EnvFm is produced as a full-length gp72 precursor, which undergoes some partial cleavage. We observed that said mutation does not drastically affect its expression or its entry into the secretory pathway of S2 insect cells. In addition, it is expressed on the membrane and retains significant structural motifs when expressed in S2 insect cells. Morphology and size of purified BLV-VLPs were analyzed by transmission electron microscopy and dynamic light scattering, showing numerous non-aggregated and approximately spherical particles of variable diameter (70–200 nm) as previously reported for retroviral VLPs produced using different expression systems. Furthermore, we identified two N-glycosylation patterns rich in mannose in EnvFm protein displayed on VLP2. Our results suggest that the VLPs produced in Drosophila S2 cells could be a potential immunogen to be used in the development of BLV vaccines that might contribute, in conjunction with other control strategies, to reduce the transmission of the virus.CSIC I+D 2014ANII: ALI_1_2016_2_129851; POS_NAC_2015_1_109471PEDECIBA-FOCEM: COF 03/11CAP: BFPD_2020_1#2814383

    Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2, 445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionizationtime of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD

    Association of a single nucleotide polymorphism combination pattern of the Klotho gene with non-cardiovascular death in patients with chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is associated with an elevated risk of all-cause mortality, with cardiovascular death being extensively investigated. However, non-cardiovascular mortality represents the biggest percentage, showing an evident increase in recent years. Klotho is a gene highly expressed in the kidney, with a clear influence on lifespan. Low levels of Klotho have been linked to CKD progression and adverse outcomes. Single nucleotide polymorphisms (SNPs) of the Klotho gene have been associated with several diseases, but studies investigating the association of Klotho SNPs with noncardiovascular death in CKD populations are lacking. The main aim of this study was to assess whether 11 Klotho SNPs were associated with non-cardiovascular death in a subpopulation of the National Observatory of Atherosclerosis in Nephrology (NEFRONA) study (n ¼ 2185 CKD patients). After 48 months of follow-up, 62 cardiovascular deaths and 108 non-cardiovascular deaths were recorded. We identified a high non-cardiovascular death risk combination of SNPs corresponding to individuals carrying the most frequent allele (G) at rs562020, the rare allele (C) at rs2283368 and homozygotes for the rare allele (G) at rs2320762 (rs562020 GG/AG þ rs2283368 CC/CT þ rs2320762 GG). Among the patients with the three SNPs genotyped (n ¼ 1016), 75 (7.4%) showed this combination. Furthermore, 95 (9.3%) patients showed a low-risk combination carrying all the opposite genotypes (rs562020 AA þ rs2283368 TT þ rs2320762 GT/TT). All the other combinations [n ¼ 846 (83.3%)] were considered as normal risk. Using competing risk regression analysis, we confirmed that the proposed combinations are independently associated with a higher fhazard ratio [HR] 3.28 [confidence interval (CI) 1.51-7.12]g and lower [HR 6 × 10- (95% CI 3.3 × 10--1.1 × 10-)] risk of suffering a non-cardiovascular death in the CKD population of the NEFRONA cohort compared with patients with the normal-risk combination. Determination of three SNPs of the Klotho gene could help in the prediction of non-cardiovascular death in CKD

    Association of candidate gene polymorphisms with chronic kidney disease : Results of a case-control analysis in the NEFRONA cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2,445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionization-time of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD
    corecore