9,853 research outputs found

    Top dimensional group of the basic intersection cohomology for singular riemannian foliations

    Full text link
    It is known that, for a regular riemannian foliation on a compact manifold, the properties of its basic cohomology (non-vanishing of the top-dimensional group and Poincar\'e Duality) and the tautness of the foliation are closely related. If we consider singular riemannian foliations, there is little or no relation between these properties. We present an example of a singular isometric flow for which the top dimensional basic cohomology group is non-trivial, but its basic cohomology does not satisfy the Poincar\'e Duality property. We recover this property in the basic intersection cohomology. It is not by chance that the top dimensional basic intersection cohomology groups of the example are isomorphic to either 0 or R\mathbb{R}. We prove in this Note that this holds for any singular riemannian foliation of a compact connected manifold. As a Corollary, we get that the tautness of the regular stratum of the singular riemannian foliation can be detected by the basic intersection cohomology.Comment: 11 pages. Accepted for publication in the Bulletin of the Polish Academy of Science

    Line formation in solar granulation: I. Fe line shapes, shifts and asymmetries

    Full text link
    Realistic ab-initio 3D, radiative-hydrodynamical convection simulations of the solar granulation have been applied to FeI and FeII line formation. In contrast to classical analyses based on hydrostatic 1D model atmospheres the procedure contains no adjustable free parameters but the treatment of the numerical viscosity in the construction of the 3D, time-dependent, inhomogeneous model atmosphere and the elemental abundance in the 3D spectral synthesis. However, the numerical viscosity is introduced purely for numerical stability purposes and is determined from standard hydrodynamical test cases with no adjustments allowed to improve the agreement with the observational constraints from the solar granulation. The non-thermal line broadening is mainly provided by the Doppler shifts arising from the convective flows in the solar photosphere and the solar oscillations. The almost perfect agreement between the predicted temporally and spatially averaged line profiles for weak Fe lines with the observed profiles and the absence of trends in derived abundances with line strengths, seem to imply that the micro- and macroturbulence concepts are obsolete in these 3D analyses. Furthermore, the theoretical line asymmetries and shifts show a very satisfactory agreement with observations with an accuracy of typically 50-100 m/s on an absolute velocity scale. The remaining minor discrepancies point to how the convection simulations can be refined further.Comment: Accepted for A&

    The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus

    Get PDF
    We present observations of the molecular gas in the nuclear environment of three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of ~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over an area that is ~9 times smaller and column densities that are in average ~3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGN may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGN is dominated by intermediate-age/old stellar populations (with little or no on-going star formation), consistent with a late stage of evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication in ApJ Letter

    Time-resolved infrared emission from radiation-driven central obscuring structures in Active Galactic Nuclei

    Full text link
    The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the geometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    Line formation in solar granulation VI. [C I], C I, CH and C2 lines and the photospheric C abundance

    Full text link
    The solar photospheric carbon abundance has been determined from [C I], C I, CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means of a time-dependent, 3D, hydrodynamical model of the solar atmosphere. Departures from LTE have been considered for the C I lines. These turned out to be of increasing importance for stronger lines and are crucial to remove a trend in LTE abundances with the strengths of the lines. Very gratifying agreement is found among all the atomic and molecular abundance diagnostics in spite of their widely different line formation sensitivities. The mean of the solar carbon abundance based on the four primary abundance indicators ([C I], C I, CH vibration-rotation, C_2 Swan) is log C = 8.39 +/- 0.05, including our best estimate of possible systematic errors. Consistent results also come from the CH electronic lines, which we have relegated to a supporting role due to their sensitivity to the line broadening. The new 3D based solar C abundance is significantly lower than previously estimated in studies using 1D model atmospheres.Comment: Accepted for A&A, 13 page

    ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445

    Get PDF
    We present Atacama Large Millimeter Array (ALMA) polarization observations at 97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot structure is dominated by two bright components enshrouded by diffuse emission. Both components show fractional polarization between 30 and 40 per cent, suggesting the presence of shocks. The polarized emission of the western component has a displacement of about 0.5 kpc outward with respect to the total intensity emission, and may trace the surface of a front shock. Strong polarization is observed in a thin strip marking the ridge of the hot spot structure visible from radio to optical. No significant polarization is detected in the diffuse emission between the main components, suggesting a highly disordered magnetic field likely produced by turbulence and instabilities in the downstream region that may be at the origin of the extended optical emission observed in this hot spot. The polarization properties support a scenario in which a combination of both multiple and intermittent shock fronts due to jet dithering, and spatially distributed stochastic second-order Fermi acceleration processes are present in the hot spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette
    • …
    corecore