10,107 research outputs found
Top dimensional group of the basic intersection cohomology for singular riemannian foliations
It is known that, for a regular riemannian foliation on a compact manifold,
the properties of its basic cohomology (non-vanishing of the top-dimensional
group and Poincar\'e Duality) and the tautness of the foliation are closely
related. If we consider singular riemannian foliations, there is little or no
relation between these properties. We present an example of a singular
isometric flow for which the top dimensional basic cohomology group is
non-trivial, but its basic cohomology does not satisfy the Poincar\'e Duality
property. We recover this property in the basic intersection cohomology. It is
not by chance that the top dimensional basic intersection cohomology groups of
the example are isomorphic to either 0 or . We prove in this Note
that this holds for any singular riemannian foliation of a compact connected
manifold. As a Corollary, we get that the tautness of the regular stratum of
the singular riemannian foliation can be detected by the basic intersection
cohomology.Comment: 11 pages. Accepted for publication in the Bulletin of the Polish
Academy of Science
Line formation in solar granulation: I. Fe line shapes, shifts and asymmetries
Realistic ab-initio 3D, radiative-hydrodynamical convection simulations of
the solar granulation have been applied to FeI and FeII line formation. In
contrast to classical analyses based on hydrostatic 1D model atmospheres the
procedure contains no adjustable free parameters but the treatment of the
numerical viscosity in the construction of the 3D, time-dependent,
inhomogeneous model atmosphere and the elemental abundance in the 3D spectral
synthesis. However, the numerical viscosity is introduced purely for numerical
stability purposes and is determined from standard hydrodynamical test cases
with no adjustments allowed to improve the agreement with the observational
constraints from the solar granulation. The non-thermal line broadening is
mainly provided by the Doppler shifts arising from the convective flows in the
solar photosphere and the solar oscillations. The almost perfect agreement
between the predicted temporally and spatially averaged line profiles for weak
Fe lines with the observed profiles and the absence of trends in derived
abundances with line strengths, seem to imply that the micro- and
macroturbulence concepts are obsolete in these 3D analyses. Furthermore, the
theoretical line asymmetries and shifts show a very satisfactory agreement with
observations with an accuracy of typically 50-100 m/s on an absolute velocity
scale. The remaining minor discrepancies point to how the convection
simulations can be refined further.Comment: Accepted for A&
The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus
We present observations of the molecular gas in the nuclear environment of
three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted
integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of
~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the
molecular gas are consistent with a rotating thin disk, where the ratio of
rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50
pc, the observations reveal a geometrically and optically thick structure of
molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be
associated with the outer extent of any smaller scale obscuring structure. In
contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over
an area that is ~9 times smaller and column densities that are in average ~3
times smaller. We interpret these results as evidence for a gradual
disappearance of the nuclear obscuring structure. While a disk wind may not be
able to maintain a thick rotating structure at these luminosities, inflow of
material into the nuclear region could provide sufficient energy to sustain it.
In this context, LLAGN may represent the final phase of accretion in current
theories of torus evolution. While the inflow rate is considerable during the
Seyfert phase, it is slowly decreasing, and the collisional disk is gradually
transitioning to become geometrically thin. Furthermore, the nuclear region of
these LLAGN is dominated by intermediate-age/old stellar populations (with
little or no on-going star formation), consistent with a late stage of
evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication
in ApJ Letter
Time-resolved infrared emission from radiation-driven central obscuring structures in Active Galactic Nuclei
The central engines of Seyfert galaxies are thought to be enshrouded by
geometrically thick gas and dust structures. In this article, we derive
observable properties for a self-consistent model of such toroidal gas and dust
distributions, where the geometrical thickness is achieved and maintained with
the help of X-ray heating and radiation pressure due to the central engine.
Spectral energy distributions (SEDs) and images are obtained with the help of
dust continuum radiative transfer calculations with RADMC-3D. For the first
time, we are able to present time-resolved SEDs and images for a physical model
of the central obscurer. Temporal changes are mostly visible at shorter
wavelengths, close to the combined peak of the dust opacity as well as the
central source spectrum and are caused by variations in the column densities of
the generated outflow. Due to the three-component morphology of the
hydrodynamical models -- a thin disc with high density filaments, a surrounding
fluffy component (the obscurer) and a low density outflow along the rotation
axis -- we find dramatic differences depending on wavelength: whereas the
mid-infrared images are dominated by the elongated appearance of the outflow
cone, the long wavelength emission is mainly given by the cold and dense disc
component. Overall, we find good agreement with observed characteristics,
especially for those models, which show clear outflow cones in combination with
a geometrically thick distribution of gas and dust, as well as a geometrically
thin, but high column density disc in the equatorial plane.Comment: 16 pages, 12 figures, accepted for publication in MNRA
Line formation in solar granulation VI. [C I], C I, CH and C2 lines and the photospheric C abundance
The solar photospheric carbon abundance has been determined from [C I], C I,
CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means
of a time-dependent, 3D, hydrodynamical model of the solar atmosphere.
Departures from LTE have been considered for the C I lines. These turned out to
be of increasing importance for stronger lines and are crucial to remove a
trend in LTE abundances with the strengths of the lines. Very gratifying
agreement is found among all the atomic and molecular abundance diagnostics in
spite of their widely different line formation sensitivities. The mean of the
solar carbon abundance based on the four primary abundance indicators ([C I], C
I, CH vibration-rotation, C_2 Swan) is log C = 8.39 +/- 0.05, including our
best estimate of possible systematic errors. Consistent results also come from
the CH electronic lines, which we have relegated to a supporting role due to
their sensitivity to the line broadening. The new 3D based solar C abundance is
significantly lower than previously estimated in studies using 1D model
atmospheres.Comment: Accepted for A&A, 13 page
ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445
We present Atacama Large Millimeter Array (ALMA) polarization observations at
97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot
structure is dominated by two bright components enshrouded by diffuse emission.
Both components show fractional polarization between 30 and 40 per cent,
suggesting the presence of shocks. The polarized emission of the western
component has a displacement of about 0.5 kpc outward with respect to the total
intensity emission, and may trace the surface of a front shock. Strong
polarization is observed in a thin strip marking the ridge of the hot spot
structure visible from radio to optical. No significant polarization is
detected in the diffuse emission between the main components, suggesting a
highly disordered magnetic field likely produced by turbulence and
instabilities in the downstream region that may be at the origin of the
extended optical emission observed in this hot spot. The polarization
properties support a scenario in which a combination of both multiple and
intermittent shock fronts due to jet dithering, and spatially distributed
stochastic second-order Fermi acceleration processes are present in the hot
spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette
Documentary evidence for changing climatic and anthropogenic influences on the Bermejo Wetland in Mendoza, Argentina, during the 16th–20th century
This paper examines the processes underlying changes to the once-extensive Bermejo Wetland, east of the city of Mendoza, Argentina (32°55' S, 68°51' W). Historical documents and maps from the 16th to 20th century are used to reconstruct environmental shifts. Historical documents indicate periods of increased snowfall in the adjacent Andes mountains, as well as high flow volumes in the Mendoza River. Data from georeferenced maps, the first from 1802 and the last from 1903, reflect the changes in the surface area of the wetland. The combined data sets show pulses of growth and retraction, in which major expansions coincided with more intense snowstorms and increased flow in the Mendoza River, which in turn influenced socio-economic activities. The wetland became progressively drier during the 19th century, before drying up completely around 1930, due in part to the construction of drainages and channels
- …