57 research outputs found

    Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo "traces" on the murine IAPE and human HERV-K elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APOBEC3 cytosine deaminases have been demonstrated to restrict infectivity of a series of retroviruses, with different efficiencies depending on the retrovirus. In addition, APOBEC3 proteins can severely restrict the intracellular transposition of a series of retroelements with a strictly intracellular life cycle, including the murine IAP and MusD LTR-retrotransposons.</p> <p>Results</p> <p>Here we show that the IAPE element, which is the infectious progenitor of the strictly intracellular IAP elements, and the infectious human endogenous retrovirus HERV-K are restricted by both murine and human APOBEC3 proteins in an <it>ex vivo </it>assay for infectivity, with evidence in most cases of strand-specific G-to-A editing of the proviruses, with the expected signatures. <it>In silico </it>analysis of the naturally occurring genomic copies of the corresponding endogenous elements performed on the mouse and human genomes discloses "traces" of APOBEC3-editing, with the specific signature of the murine APOBEC3 and human APOBEC3G enzymes, respectively, and to a variable extent depending on the family member.</p> <p>Conclusion</p> <p>These results indicate that the IAPE and HERV-K elements, which can only replicate via an extracellular infection cycle, have been restricted at the time of their entry, amplification and integration into their target host genomes by definite APOBEC3 proteins, most probably acting in evolution to limit the mutagenic effect of these endogenized extracellular parasites.</p

    mRNA maturation in giant viruses: variation on a theme

    Get PDF
    International audienceGiant viruses from the Mimiviridae family replicate entirely in their host cytoplasm where their genes are transcribed by a viral transcription apparatus. mRNA polyadenylation uniquely occurs at hairpin-forming palindromic sequences terminating viral transcripts. Here we show that a conserved gene cluster both encode the enzyme responsible for the hairpin cleavage and the viral polyA polymerases (vPAP). Unexpectedly, the vPAPs are homodimeric and uniquely self-processive. The vPAP backbone structures exhibit a symmetrical architecture with two subdomains sharing a nucleotidyltransferase topology, suggesting that vPAPs originate from an ancestral duplication. A Poxvirus processivity factor homologue encoded by Megavirus chilensis displays a conserved 5'-GpppA 2'O methyltransferase activity but is also able to internally methylate the mRNAs' polyA tails. These findings elucidate how the arm wrestling between hosts and their viruses to access the translation machinery is taking place in Mimiviridae

    The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain

    No full text
    International audienceViral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltrans-ferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conforma-tions during RNA synthesis

    Uracil within DNA: an actor of antiviral immunity

    No full text
    Uracil is a natural base of RNA but may appear in DNA through two different pathways including cytosine deamination or misincorporation of deoxyuridine 5'-triphosphate nucleotide (dUTP) during DNA replication and constitutes one of the most frequent DNA lesions. In cellular organisms, such lesions are faithfully cleared out through several universal DNA repair mechanisms, thus preventing genome injury. However, several recent studies have brought some pieces of evidence that introduction of uracil bases in viral genomic DNA intermediates during genome replication might be a way of innate immune defence against some viruses. As part of countermeasures, numerous viruses have developed powerful strategies to prevent emergence of uracilated viral genomes and/or to eliminate uracils already incorporated into DNA. This review will present the current knowledge about the cellular and viral countermeasures against uracils in DNA and the implications of these uracils as weapons against viruses

    APOBEC3 family members and their associated roles in exogenous viruses and endogenous retroelements restriction

    No full text
    Data are compiled from [27, 77, 87, 90, 126-140].<p><b>Copyright information:</b></p><p>Taken from "Uracil within DNA: an actor of antiviral immunity"</p><p>http://www.retrovirology.com/content/5/1/45</p><p>Retrovirology 2008;5():45-45.</p><p>Published online 5 Jun 2008</p><p>PMCID:PMC2427051.</p><p></p

    Biosynthesis pathways of ribonucleotides and deoxyribonucleotides in mammalian cells and the possible consequence of the misincorporation and repair of uracil residues in DNA

    No full text
    synthesis of AMP, CMP, GMP and UMP ribonucleotides allows the formation of dATP, dCTP, dGTP, dTTP and dUTP deoxyribonucleotides, which can be readily incorporated in DNA by cellular DNA polymerases. Note that dTTP derives from dUTP hydrolysis. Abbreviations: A, adenine; C, cytosine; G, guanine; T, thymine; U, uracil; MP, monophosphate; DP, diphosphate; TP, triphosphate; rNDP, ribonucleotide diphosphate; NMPK, nucleotide monophosphate kinase; NDPK, nucleotide diphosphate kinase.<p><b>Copyright information:</b></p><p>Taken from "Uracil within DNA: an actor of antiviral immunity"</p><p>http://www.retrovirology.com/content/5/1/45</p><p>Retrovirology 2008;5():45-45.</p><p>Published online 5 Jun 2008</p><p>PMCID:PMC2427051.</p><p></p

    Haiku: New paradigm for the reverse genetics of emerging RNA viruses.

    No full text
    Reverse genetics is key technology for producing wild-type and genetically modified viruses. The ISA (Infectious Subgenomic Amplicons) method is a recent versatile and user-friendly reverse genetics method to rescue RNA viruses. The main constraint of its canonic protocol was the requirement to produce (e.g., by DNA synthesis or fusion PCR) 5' and 3' modified genomic fragments encompassing the human cytomegalovirus promoter (pCMV) and the hepatitis delta virus ribozyme/simian virus 40 polyadenylation signal (HDR/SV40pA), respectively. Here, we propose the ultimately simplified "Haiku" designs in which terminal pCMV and HDR/SV40pA sequences are provided as additional separate DNA amplicons. This improved procedure was successfully applied to the rescue of a wide range of viruses belonging to genera Flavivirus, Alphavirus and Enterovirus in mosquito or mammalian cells using only standard PCR amplification techniques and starting from a variety of original materials including viral RNAs extracted from cell supernatant media or animal samples. We also demonstrate that, in specific experimental conditions, the presence of the HDR/SV40pA is not necessary to rescue the targeted viruses. These ultimately simplified "Haiku" designs provide an even more simple, rapid, versatile and cost-effective tool to rescue RNA viruses since only generation of overlapping amplicons encompassing the entire viral genome is now required to generate infectious virus. This new approach may completely modify our capacity to obtain infectious RNA viruses
    • …
    corecore