124 research outputs found

    Analysis of 5 KHz combustion instabilities in 40K methane/LOX combustion chambers

    Get PDF
    In 40K methane/LOX 5 KHz engine tests, (first transverse mode) combustion instabilities observed by Rocketdyne are analyzed using Heidmann and Wieber's vaporization model to include LOX flow oscillations. The LOX flow oscillations are determined by including acoustic waves in the feed system analysis. The major parameter controlling stability is the distance (or time delay) associated with atomizing the LOX stream in the coaxial injection system. Results of the analysis that show the influence of mixture ratio, oxidizer and fuel injection velocities, burning time and combustion chamber/injector dimensions on stability are used to explain the existing data. Calculated results to predict the influence of design changes being made for the next set of experiments are also presented

    The 3D rocket combustor acoustics model

    Get PDF
    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements

    Combustion instability coupling with feed system acoustics

    Get PDF
    High frequency combustion instability has recently been observed by Rocketdyne in a 40K thrust methane/LOX combustion chamber. The oscillations had frequencies as high as 14,000 Hz with pressure amplitudes in the LOX dome of 500 psi at a chamber pressures of 2,000 psi. At this frequency the wave length associated with a period of oscillation is 2.3 inches in LOX and 1.4 inches in methane. These distances are comparable to the lengths of the injector elements which requires that acoustic waves be considered in the feed systems rather than using lumped parameters as is normally considered for feed system coupled oscillations. To expand the capability of existing models, the Feiler and Heidmann feed system coupled instability model was modified to include acoustic oscillations in the feed system. Similarly the vaporization controlled instability model of Heidmann and Wieber was modified to include flow oscillations that would be produced by feed system coupling. The major elements that control oscillations in a rocket combustion chamber are shown and discussed

    Calculations of combustion response profiles and oscillations

    Get PDF
    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined

    Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    Get PDF
    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified

    Propulsion Design With Freeform Fabrication (PDFF)

    Get PDF
    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in an SFF thruster design could reduce thruster weight by a factor of two or more. The thrust-to-weight ratios for such designs can achieve 1,000:1 or more, depending on chamber pressure. The potential exists for continued development in materials, size, speed, accuracy of SFF techniques, which can lead to speculative developments of PDFF processes such as fabrication of custom human interface devices like masks, chairs, and clothing, and advanced biomedical application to human organ reconstruction. Other potential applications are: higher fidelity lower cost test fixtures for probes and inspection, disposable thrusters, and ISRU (in situ resource utilization) for component production in space or on Lunar and Martian missions, and application for embedding MEMS (microelectromechanical systems) during construction process of form changing aerostructure/dynamic structures
    • …
    corecore