37,928 research outputs found

    Study of pickup of cometary ions in turbulent solar winds

    Get PDF
    The influence of moderately strong magnetic disturbances on the ion pickup process near a comet is studied by a test-particle method. The research is motivated by recent observations with ICE and Giotto at Giacobini-Zinner and Halley. In this numerical study, the intrinsic hydromagnetic turbulence is modelled based on the Giotto and ICE data. The time evolution of the distribution function of the newborn ions is investigated. It is found that, when the level of the intrinsic turbulence is sufficiently high, the pickup ions can form a shell distribution function rapidly. The typical time scale for such a process is of the order of a couple of ion gyroperiods. On the other hand, if the turbulence is not strong, the pickup ions usually form an incomplete shell in the initial stage. The results seem to be consistent with available observations

    Finding Scientific Gems with Google

    Full text link
    We apply the Google PageRank algorithm to assess the relative importance of all publications in the Physical Review family of journals from 1893--2003. While the Google number and the number of citations for each publication are positively correlated, outliers from this linear relation identify some exceptional papers or "gems" that are universally familiar to physicists.Comment: 6 pages, 4 figures, 2 tables, 2-column revtex4 forma

    Dynamic stability study for sounding rockets Final report

    Get PDF
    Joint rotation and compliance, body and fin flexibility, and aerodynamic characteristics effect on roll resonance of sounding rocket

    Making automation pay - cost & throughput trade-offs in the manufacture of large composite components

    Get PDF
    The automation of complex manufacturing operations can provide significant savings over manual processes, and there remains much scope for increasing automation in the production of large scale structural composites. However the relationships between driving variables are complex, and the achievable throughput rate and corresponding cost for a given design are often not apparent. The deposition rate, number of machines required and unit production rates needed are interrelated and consequently the optimum unit cost is difficult to predict. A detailed study of the costs involved for a series of composite wing cover panels with different manufacturing requirements was undertaken. Panels were sized to account for manufacturing requirements and structural load requirements allowing both manual and automated lay-up procedures to influence design. It was discovered that the introduction of automated tape lay-up can significantly reduce material unit cost, and improve material utilisation, however higher production rates are needed to see this benefit

    An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV

    Get PDF
    Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum

    Integrating visual and tactile information in the perirhinal cortex

    Get PDF
    By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visual–tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visual–tactile) than unimodal (visual–visual or tactile–tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visual–tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices

    Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection

    Full text link
    Astrophysical neutrinos at \simEeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic (``GZK'') neutrinos at 1016^{16} - 1020^{20} eV would test models of cosmic ray production at these energies and probe particle physics at \sim100 TeV center-of-mass energy. While IceCube could detect \sim1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC, Pune, Indi

    Functional specialization of the yeast Rho1 GTP exchange factors

    Get PDF
    Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1

    Comments on "Limits on Dark Matter Using Ancient Mica"

    Get PDF
    To appear in Phys. Rev. Lett. together with the author's Reply.Comment: Compressed PostScript (filename.ps.Z), 3 pages, no figure
    corecore