2,453 research outputs found

    Children's traditional ecological knowledge of wild food resources: a case study in a rural village in Northeast Thailand

    Get PDF
    Consuming wild foods is part of the food ways of people in many societies, including farming populations throughout the world. Knowledge of non-domesticated food resources is part of traditional and tacit ecological knowledge, and is largely transmitted through socialization within cultural and household contexts. The context of this study, a small village in Northeast Thailand, is one where the community has experienced changes due to the migration of the parental generation, with the children being left behind in the village to be raised by their grandparents

    Comment on “Using NMR to Test Molecular Mobility during a Chemical Reaction” ()

    Full text link
    A study reported inThe Journal of Physical Chemistry Letters(Wang et al.,2021,12, 2370) of “boosted mobility” measured by diffusion NMR experiments contains significant errors in data analysis and interpretation. We carefully reanalyzed the same data and find no evidence of boosted mobility, and we identify several sources of error

    Chiral-loop and vector-meson contributions to eta -> pi pi gamma gamma decays

    Full text link
    The process eta -> pi0 pi0 gamma gamma is discussed in Chiral Perturbation Theory (ChPT) extending two recent analyses. Special attention is devoted to one-loop corrections, eta-eta' mixing effects and vector-meson dominance of ChPT counter-terms. The less interesting eta -> pi^+ pi^- gamma gamma transition is briefly discussed too.Comment: 15 pages, 3 Postscript figures, uses epsfig.st

    Response to Comment on "following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion" and "molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question"

    Full text link
    In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our groups (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455) and another (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754), Huang and Granick discuss the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click"reaction. Here we respond to these comments and maintain that no diffusion enhancement was observed for any species during the reaction. We show that the relaxation agent does not interfere with the CuAAC reaction kinetics nor the diffusion of the molecules involved. Similarly, the gradient pulse length and diffusion time do not affect the diffusion coefficients. Peak overlap was completely removed in our study with the use of hydrazine as the reducing agent. The steady-state assumption does not hold for these diffusion measurements that take several minutes, which is the reason monotonic gradient orders are not suitable. Finally, we discuss the other reactions where similar changes in diffusion have been claimed. Our conclusions are fully supported by the results represented in our original JACS Article and the corresponding Supporting Information

    Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion

    Get PDF
    Lanthanides are rare-earth metals with a broad range of applications in biological research and medicine. In addition to their unique magnetic and spectroscopic properties, lanthanides are also effective mimics of calcium and can stimulate or inhibit the function of calcium-binding proteins. Cadherins are a large family of calcium-binding proteins that facilitate cell adhesion and play key roles in embryo development, tissue homeostasis and tumour metastasis. However, whether lanthanides can bind cadherins and functionally replace calcium binding has not been comprehensively explored. In this study, we investigated the effect of lanthanide binding on cadherin structure and function using terbium, which is a commonly used lanthanide for protein spectroscopy and a proposed anti-cancer agent. We demonstrate that terbium can compete with calcium for binding to calcium-binding sites in cadherins. Terbium binding to cadherins abolished their cell adhesive activity and rendered cadherins sensitive to proteolysis by trypsin. Molecular dynamics simulations indicate that replacement of calcium by terbium results in structural rearrangements and increases the flexibility of the cadherin ectodomain. These changes in structure and dynamics are likely to underlie the inability of lanthanide-bound cadherins to support cell adhesion. Taken together, our findings further knowledge on lanthanide interactions with calcium-binding proteins and provide new insight into the influence of metal chemistry on cadherin structure, dynamics and function

    Adaptive Comparative Judgement: A Tool to Support Students’ Assessment Literacy

    Get PDF
    Comparative judgment in assessment is a process whereby repeated comparison of two items (e.g., assessment answers) can allow an accurate ranking of all the submissions to be achieved. In adaptive comparative judgment (ACJ), technology is used to automate the process and present pairs of pieces of work over iterative cycles. An online ACJ system was used to present students with work prepared by a previous cohort at the same stage of their studies. Objective marks given to the work by experienced faculty were compared to the rankings given to the work by a cohort of veterinary students (n=154). Each student was required to review and judge 20 answers provided by the previous cohort to a free-text short answer question. The time that students spent on the judgment tasks was recorded, and students were asked to reflect on their experiences after engaging with the task. There was a strong positive correlation between student ranking and faculty marking. A weak positive correlation was found between the time students spent on the judgments and their performance on the part of their own examination that contained questions in the same format. Slightly less than half of the students agreed that the exercise was a good use of their time, but 78% agreed that they had learned from the process. Qualitative data highlighted different levels of benefit from the simplest aspect of learning more about the topic to an appreciation of the more generic lessons to be learned

    Inference of population splits and mixtures from genome-wide allele frequency data

    Full text link
    Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for inferring the patterns of population splits and mixtures in multiple populations. In this model, the sampled populations in a species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration events that we find have been detected previously, many have not. For example, in the human data we infer that Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese) result from admixture between modern toy breeds and "ancient" Asian breeds. Software implementing the model described here, called TreeMix, is available at http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15 figures. This is an updated version of the preprint available at http://precedings.nature.com/documents/6956/version/

    Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis

    Get PDF
    Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment
    • …
    corecore