6 research outputs found

    Vortex qubit based on an annular Josephson junction containing a microshort

    Get PDF
    We report theoretical and experimental work on the development of a vortex qubit based on a microshort in an annular Josephson junction. The microshort creates a potential barrier for the vortex, which produces a double-well potential under the application of an in-plane magnetic field; the field strength tunes the barrier height. A one-dimensional model for this system is presented, from which we calculate the vortex-depinning current and attempt frequency as well as the interwell coupling. Implementation of an effective microshort is achieved via a section of insulating barrier that is locally wider in the junction plane. Using a junction with this geometry we demonstrate classical state preparation and readout. The vortex is prepared in a given potential well by sending a series of “shaker” bias-current pulses through the junction. Readout is accomplished by measuring the vortex-depinning current

    Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative β-catenin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.</p> <p>Results</p> <p>Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a β-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative β-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.</p> <p>Conclusion</p> <p>RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating β-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.</p

    Integration of Expressed Sequence Tag Data Flanking Predicted RNA Secondary Structures Facilitates Novel Non-Coding RNA Discovery

    Get PDF
    Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation
    corecore