66 research outputs found

    Spin-torque driven magnetic vortex self-oscillations in perpendicular magnetic fields

    Full text link
    We have employed complete micromagnetic simulations to analyze dc current driven self-oscillations of a vortex core in a spin-valve nanopillar in a perpendicular field by including the coupled effect of the spin-torque and the magnetostatic field computed self-consistently for the entire spin-valve. The vortex in the thicker nanomagnet moves along a quasi-elliptical trajectory that expands with applied current, resulting in blue-shifting of the frequency, while the magnetization of the thinner nanomagnet is non-uniform due to the bias current. The simulations explain the experimental magnetoresistance-field hysteresis loop and yield good agreement with the measured frequency vs. current behavior of this spin-torque vortex oscillator.Comment: 10 pages, 3 figures, to be appear on AP

    Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

    Get PDF
    Double quantum dot in the few-electron regime is achieved using local gating in an InSb nanowire. The spectrum of two-electron eigenstates is investigated using electric dipole spin resonance. Singlet-triplet level repulsion caused by spin-orbit interaction is observed. The size and the anisotropy of singlet-triplet repulsion are used to determine the magnitude and the orientation of the spin-orbit effective field in an InSb nanowire double dot. The obtained results are confirmed using spin blockade leakage current anisotropy and transport spectroscopy of individual quantum dots.Comment: 5 pages, supplementary material available at http://link.aps.org/supplemental/10.1103/PhysRevLett.108.16680

    Suppression of Zeeman gradients by nuclear polarization in double quantum dots

    Get PDF
    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the gg-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution

    Selective Control of Conductance Modes in Multi-terminal Josephson Junctions

    Full text link
    The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work we employ a quantum point contact geometry in three-terminal Josephson devices. We demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions.Comment: 15 pages, 4 figure

    Gate-tunable Superconducting Diode Effect in a Three-terminal Josephson Device

    Full text link
    The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensional electron gas proximitized by an epitaxial aluminum superconducting layer. We demonstrate that the diode efficiency in our devices can be tuned by a small out-of-plane magnetic field or by electrostatic gating. We show that the Josephson diode effect in these devices is a consequence of the artificial realization of a current-phase relation that contains higher harmonics. We also show nonlinear DC intermodulation and simultaneous two-signal rectification, enabled by the multi-terminal nature of the devices. Furthermore, we show that the diode effect is an inherent property of multi-terminal Josephson devices, establishing an immediately scalable approach by which potential applications of the Josephson diode effect can be realized, agnostic to the underlying material platform. These Josephson devices may also serve as gate-tunable building blocks in designing topologically protected qubits

    Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse

    Full text link
    We report on spin valve devices that incorporate both an out-of-plane polarizer (OPP) to quickly excite spin torque (ST) switching and an in-plane polarizer/analyzer (IPP). For pulses < 200 ps we observe reliable precessional switching due largely to ST from the OPP. Compared to a conventional spin valve, for a given current in the short pulse regime the addition of the OPP can decrease the pulse width necessary for switching by a factor of 10 or more. The influence of the IPP is most obvious at longer, smaller pulses, but also has beneficial ST consequences for short pulse switching.Comment: 14 pages, 2 figure

    Spin-orbit interaction in InSb nanowires

    Get PDF
    We use magnetoconductance measurements in dual-gated InSb nanowire devices together with a theoretical analysis of weak antilocalization to accurately extract spin-orbit strength. In particular, we show that magnetoconductance in our three-dimensional wires is very different compared to wires in two-dimensional electron gases. We obtain a large Rashba spin-orbit strength of 0.5−1 eVA˚0.5 -1\,\text{eV\r{A}} corresponding to a spin-orbit energy of 0.25−1 meV0.25-1\,\text{meV}. These values underline the potential of InSb nanowires in the study of Majorana fermions in hybrid semiconductor-superconductor devices.Comment: Version as accepted for publication as a Rapid in Phys. Rev.

    "Smoking gun" signatures of topological milestones in trivial materials by measurement fine-tuning and data postselection

    Full text link
    Exploring the topology of electronic bands is a way to realize new states of matter with possible implications for information technology. Because bands cannot always be observed directly, a central question is how to tell that a topological regime has been achieved. Experiments are often guided by a prediction of a unique signal or a pattern, called "the smoking gun". Examples include peaks in conductivity, microwave resonances, and shifts in interference fringes. However, many condensed matter experiments are performed on relatively small, micron or nanometer-scale, specimens. These structures are in the so-called mesoscopic regime, between atomic and macroscopic physics, where phenomenology is particularly rich. In this paper, we demonstrate that the trivial effects of quantum confinement, quantum interference and charge dynamics in nanostructures can reproduce accepted smoking gun signatures of triplet supercurrents, Majorana modes, topological Josephson junctions and fractionalized particles. The examples we use correspond to milestones of topological quantum computing: qubit spectroscopy, fusion and braiding. None of the samples we use are in the topological regime. The smoking gun patterns are achieved by fine-tuning during data acquisition and by subsequent data selection to pick non-representative examples out of a fluid multitude of similar patterns that do not generally fit the "smoking gun" designation. Building on this insight, we discuss ways that experimentalists can rigorously delineate between topological and non-topological effects, and the effects of fine-tuning by deeper analysis of larger volumes of data.Comment: Data are available through Zenodo at DOI: 10.5281/zenodo.834930
    • …
    corecore