14 research outputs found

    Data science and analytics in libraries

    Get PDF
    Libraries have the virtue of managing vast amounts of information. Data Science and Analytics techniques and methodologies allow libraries to fully exploit the content they hold with the goal of providing better information to their users: better search, recommendations, etc

    A Comparative Approach between Different Computer Vision Tools, Including Commercial and Open-source, for Improving Cultural Image Access and Analysis

    Get PDF
    Digital cultural heritage objects can benefit greatly from the application of Artificial Intelligence such as computer vision based tools to automatically extract valuable information from them. Novel methods and technologies have been used in the last few years to perform image classification, object detection, caption generation, and other techniques on different types of digital objects from different disciplines. In this pilot study, carried out in the context of the Digital Humanities project ChIA, we present an approach for testing different commercial (Clarifai, IBM Watson, Microsoft Cognitive Services, Google Cloud Vision) and open-source (YOLO) computer vision (CV) tools on a set of selected cultural food images from the Europeana collection with regard to producing relevant concepts. The project generally aims at improving access to implicit cultural knowledge contained in images, and increase analysis possibilities for scientific research as well as for content providers and educational purposes. Preliminary results showed that not only quantitative output results are important, but also the quality of concepts generated. Types of digital objects can pose a challenge to CV solution

    Forschende und ihre Daten. Ergebnisse einer österreichweiten Befragung - Report 2015

    Get PDF
    This report provides an overview of the Austria-wide survey for research data, which was carried out within the framework of the project e-Infrastructures Austria at the beginning of 2015. This survey was directed at the scientific and artistic-scientific personnel of 20 public universities and three extramural research institutions in Austria

    Forschende und ihre Daten. Ergebnisse einer österreichweiten Befragung - Report 2015

    Get PDF
    This report provides an overview of the Austria-wide survey for research data, which was carried out within the framework of the project e-Infrastructures Austria at the beginning of 2015. This survey was directed at the scientific and artistic-scientific personnel of 20 public universities and three extramural research institutions in Austria

    Forschende und ihre Daten. Ergebnisse einer österreichweiten Befragung - Report 2015

    Get PDF
    This report provides an overview of the Austria-wide survey for research data, which was carried out within the framework of the project e-Infrastructures Austria at the beginning of 2015. This survey was directed at the scientific and artistic-scientific personnel of 20 public universities and three extramural research institutions in Austria

    Data Science und Analytics in Bibliotheken

    No full text
    Bibliotheken sind in einer priviligierten Situation: Sie verwalten riesige Mengen von Daten und Informationen. Data Science und Analytics-Methoden ermöglichen es Bibliotheken, den Inhalt, den sie verwalten, voll auszunutzen, um den Nutzern bessere Informationen, Suche und Empfehlungen zu bieten

    Data Science in Libraries

    No full text
    Data Science is a very powerful discipline that can assist enourmously any Library towards the digitalisation and publication of digital objects

    Data Management Plan - Eine Anleitung zur Erstellung von Data Management PlÀnen. Projekt e-Infrastructures Austria (Deutsch): Eine Anleitung zur dauerhaften Sicherung von digitalen BestÀnden

    No full text
    Data Management PlĂ€ne (DMP) entstehen hauptsĂ€chlich, um Ressourcen, vor allem finanzielle Ressourcen, effizient einzusetzen und um digitale Daten langfristig auffindbar, verstĂ€ndlich und nachnutzbar zu machen. Die sorgfĂ€ltige Planung eines Projekts bringt eine Reihe von Vorteilen mit sich: Kostentransparenz von Beginn an sowie einen optimalen Einsatz von Knowhow, Infrastruktur und Dienstleistungen. DMP fördern darĂŒber hinaus das VerstĂ€ndnis fĂŒr die eigenen Arbeitsprozesse bei der DurchfĂŒhrung von Projekten. In diesem Sinne helfen sie auch, eine unserer wichtigsten Ressourcen, nĂ€mlich „Zeit“, effektiv zu nutzen. DMP bringen nicht nur Vorteile fĂŒr die Projektleitung bzw. das Management, sie sind auch fĂŒr folgende Stakeholder von Bedeutung: den Projektantragsteller, das Repository-Management, die Institution, den Fördergeber und die Policy-Verantwortlichen. Aus diesem Grund können DMP in ihrer konkreten Form variieren, je nachdem aus welcher Perspektive sie entstehen. In der vorliegenden Anleitung richten wir uns vor allem an zwei Nutzergruppen: den Projektantragsteller und das Projektmanagement. So werden bei der Erstellung eines DMPs die wichtigsten Phasen der DurchfĂŒhrung und damit verbundene Arbeitsprozesse sichtbar. Wir weisen darauf hin, dass wir uns dieser Thematik und auch jenem wichtigen Teil der Arbeit, der sich hinter dem Akronym „PMP“ (Process Management PlĂ€ne) verbirgt, im Rahmen unserer Phaidra-Schulungen und PhaidraLab-Workshops widme

    Data Management Plan for projects at the University of Vienna. Recommended Repository: Phaidra (V2.0/customised for UNIVIE) (English): Version 2.0 / customised for UNIVIE

    No full text
    Data Management Plans (DMP) encompass the entire lifecycle of data, including generation, storage, and management of data after project completion. For researchers, DMPs provide an aid to start thinking, right from the beginning, about appropriate formats, documentation and possibilities for long-term archiving. Additionally, DMPs assist on determining additional financial resources for legal advice or technical assistance required for the project

    Questionnaire: National Research Data Survey 2015 (English)

    No full text
    In 2015, this survey was directed at the scientific and artistic-scientific personnel of all 21 public universities and three extramural research institutions in Austria. The questionnaire is based on institutional, discipline-specific surveys that have already been performed at universities and research institutions in other countries. Emphasis was placed on the creation of a specially developed questionnaire which took into consideration the different cultures in science and art
    corecore