113 research outputs found

    Enhancement of SSVEPs Classification in BCI-based Wearable Instrumentation Through Machine Learning Techniques

    Get PDF
    This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady-State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies provide a significant enhancement of the SSVEP classification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1-σ reproducibility: this, in turn, anticipates an easier development of ready-to-use systems

    A ML-based Approach to Enhance Metrological Performance of Wearable Brain-Computer Interfaces

    Get PDF
    In this paper, the adoption of Machine Learning (ML) classifiers is addressed to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces (BCIs). The proposed BCI is based on the classification of Steady-State Visually Evoked Potentials (SSVEPs). In this setup, Augmented Reality Smart Glasses are used to generate and display the flickering stimuli for the SSVEP elicitation. An experimental campaign was conducted on 20 adult volunteers. Successively, a Leave-One-Subject-Out Cross Validation was performed to validate the proposed algorithm. The obtained experimental results demonstrate that suitable ML-based processing strategies outperform the state-of-the-art techniques in terms of classification accuracy. Furthermore, it was also shown that the adoption of an inter-subjective model successfully led to a decrease in the 3-σ uncertainty: this can facilitate future developments of ready-to-use systems

    Assessment of blood perfusion quality in laparoscopic colorectal surgery by means of Machine Learning

    Get PDF
    An innovative algorithm to automatically assess blood perfusion quality of the intestinal sector in laparoscopic colorectal surgery is proposed. Traditionally, the uniformity of the brightness in indocyanine green-based fluorescence consists only in a qualitative, empirical evaluation, which heavily relies on the surgeon’s subjective assessment. As such, this leads to assessments that are strongly experience-dependent. To overcome this limitation, the proposed algorithm assesses the level and uniformity of indocyanine green used during laparoscopic surgery. The algorithm adopts a Feed Forward Neural Network receiving as input a feature vector based on the histogram of the green band of the input image. It is used to (i) acquire information related to perfusion during laparoscopic colorectal surgery, and (ii) support the surgeon in assessing objectively the outcome of the procedure. In particular, the algorithm provides an output that classifies the perfusion as adequate or inadequate. The algorithm was validated on videos captured during surgical procedures carried out at the University Hospital Federico II in Naples, Italy. The obtained results show a classification accuracy equal to 99.9 % , with a repeatability of 1.9 %. Finally, the real-time operation of the proposed algorithm was tested by analyzing the video streaming captured directly from an endoscope available in the OR

    A framework to identify structured behavioral patterns within rodent spatial trajectories

    Get PDF
    Animal behavior is highly structured. Yet, structured behavioral patterns—or “statistical ethograms”—are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.g., maze) navigation, in terms of movement building blocks or motor primitives. The hypothesis that we pursue is that rodent behavior is characterized by a small number of motor primitives, which are combined over time to produce open-ended movements. We assume motor primitives to be organized in terms of two sparsity principles: each movement is controlled using a limited subset of motor primitives (sparse superposition) and each primitive is active only for time-limited, time-contiguous portions of movements (sparse activity). We formalize this hypothesis using a sparse dictionary learning method, which we use to extract motor primitives from rodent position and velocity data collected during spatial navigation, and successively to reconstruct past trajectories and predict novel ones. Three main results validate our approach. First, rodent behavioral trajectories are robustly reconstructed from incomplete data, performing better than approaches based on standard dimensionality reduction methods, such as principal component analysis, or single sparsity. Second, the motor primitives extracted during one experimental session generalize and afford the accurate reconstruction of rodent behavior across successive experimental sessions in the same or in modified mazes. Third, in our approach the number of motor primitives associated with each maze correlates with independent measures of maze complexity, hence showing that our formalism is sensitive to essential aspects of task structure. The framework introduced here can be used by behavioral scientists and neuroscientists as an aid for behavioral and neural data analysis. Indeed, the extracted motor primitives enable the quantitative characterization of the complexity and similarity between different mazes and behavioral patterns across multiple trials (i.e., habit formation). We provide example uses of this computational framework, showing how it can be used to identify behavioural effects of maze complexity, analyze stereotyped behavior, classify behavioral choices and predict place and grid cell displacement in novel environments

    Machine learning for beam dynamics studies at the CERN Large Hadron Collider

    Full text link
    Machine learning entails a broad range of techniques that have been widely used in Science and Engineering since decades. High-energy physics has also profited from the power of these tools for advanced analysis of colliders data. It is only up until recently that Machine Learning has started to be applied successfully in the domain of Accelerator Physics, which is testified by intense efforts deployed in this domain by several laboratories worldwide. This is also the case of CERN, where recently focused efforts have been devoted to the application of Machine Learning techniques to beam dynamics studies at the Large Hadron Collider (LHC). This implies a wide spectrum of applications from beam measurements and machine performance optimisation to analysis of numerical data from tracking simulations of non-linear beam dynamics. In this paper, the LHC-related applications that are currently pursued are presented and discussed in detail, paying also attention to future developments

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
    corecore