613 research outputs found

    Light-microscopy methods in C. elegans research

    Get PDF
    Ever since Caenorhabditis elegans was introduced as a model system it has been tightly linked to microscopy, which has led to significant advances in understanding biology over the last decades. Developing new technologies therefore is an essential part in the endeavor to gain further mechanistic insights into developmental biology. This review will discuss state-of-the-art developments in quantitative light microscopy in the context of C. elegans research as well as the impact these technologies have on the field. We will highlight future developments that currently promise to revolutionize biological research by combining sequencing-based single-cell technologies with high-resolution quantitative imaging

    Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada

    Get PDF
    Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean δ18O of −29.1‰); this, together with low dexcess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island icethrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial–Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan

    Time-resolved luminescence of low sensitivity quartz from crystalline rocks

    Get PDF
    preprintTime-resolved luminescence spectra of low sensitivity natural quartz from crystalline rocks are presented. The luminescence was pulse-stimulated at width using 470 nm blue light from quartz separated from plutonic, metamorphic, volcanic and hydrothermal samples. Measurements were made at 20 °C. All samples show evidence of a short lifetime component less than long although in several cases too weak in intensity to be evaluated accurately. On the other hand, the value of the principal lifetime component varies considerably being about in metamorphic quartz, in plutonic quartz, and in one example of hydrothermal quartz. The results illustrate a new feature of luminescence from quartz for which lifetimes less than or greater than have never been reported at room temperature before. It is argued that the thermal provenance of the quartz and so the annealing it will have experienced influences the size of the observed lifetime. In particular, the results are explained in terms of a model consisting of three luminescence centers with the dominant lifetime linked to preferential recombination at one center depending on the thermal history of the sample and hence the hole concentration of the center

    Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe

    Get PDF
    Overdeepened structures occur in formerly and presently glaciated regions around the earth and are usually referred to as overdeepenings or tunnel valleys. The existence of such troughs has been known for more than a century, and they have been attributed to similar formation processes where subglacial meltwater plays a decisive role. This comparison highlights that (foreland) overdeepenings and tunnel valleys further occur in similar dimensions and share many characteristics such as gently sinuous shapes in plan view, undulating long profiles with terminal adverse slopes, and varying cross-sectional morphologies. The best explored examples of overdeepened structures are situated in and around the European Alps and in the central European lowlands. Especially in the vicinity of the Alps, some individual troughs are well explored, allowing for a reconstruction of their infill history, whereas only a few detailed studies, notably such involving long drill core records, have been presented from northern central Europe. We suggest that more such studies could significantly further our understanding of subglacial erosion processes and the regional glaciation histories and aim to promote more intense exchange and discussion between the respective scientific communities.</p

    A novel 2- and 3-choice touchscreen-based continuous trial-unique nonmatching-to-location task (cTUNL) sensitive to functional differences between dentate gyrus and CA3 subregions of the hippocampus.

    Get PDF
    RATIONALE: The touchscreen continuous trial-unique non-matching-to-location task (cTUNL) has been developed to optimise a battery of tasks under NEWMEDS (Novel Methods leading to New Medication in Depression and Schizophrenia, http://www.newmeds-europe.com ). It offers novel task features of both a practical and a theoretical nature compared to existing touchscreen tasks for spatial working memory. OBJECTIVES: The objective of this study was to determine whether the cTUNL task is sufficiently sensitive to differentiate between dentate gyrus (DG) and CA3 hippocampal subregion contributions to performance. METHODS: The effect of DG and CA3 dysfunction on memory for locations in the cTUNL task was tested. Rats were assessed on versions of the task-two-choice and three-choice-that differed in memory load. Performance was challenged using manipulations of delay and the spatial separation between target and sample locations. RESULTS: Dysfunction of the DG disrupts performance across both delay and spatial separations in two-choice cTUNL when the delay is variable and unpredictable. Increasing the working memory load (three stimuli) increases sensitivity to DG dysfunction, with deficits apparent at fixed, short delays. In contrast, CA3 dysfunction did not disrupt performance. CONCLUSION: Acquisition of cTUNL was rapid, and the task was sensitive to manipulations of delays and separations. A three-choice version of the task was found to be viable. Finally, both the two- and three-choice versions of the task were able to differentiate between limited dysfunction to different areas within the hippocampus. DG dysfunction affected performance when using unpredictable task parameters. CA3 dysfunction did not result in impairment, even at the longest delays tested.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA inkind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). As part of this project, CAO was funded by Janssen Pharmaceuticals, Inc., of Johnson & Johnson.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4019-

    Long-term imaging reveals behavioral plasticity during C. elegans dauer exit

    Get PDF
    During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to adjust through dynamic expression of neurotransmitters and receptors but also through growth, spatial reorganization and connectivity while integrating external stimuli. For instance, despite having a fixed neuronal cell lineage, the nematode Caenorhabditis elegans’ nervous system remains plastic throughout its development. Here, we focus on a specific example of nervous system plasticity, the C. elegans dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive dauer stage and adapt their behavior to cope with a new environment. Upon improved conditions, this stress resistant developmental stage is actively reversed to resume reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva’s behavioral change is unknown. To fill this gap, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments to identify key decision points. Combining long-term behavioral imaging with transcriptomics, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. Taken together, we show how a developing nervous system can robustly integrate environmental changes, activate a developmental switch and adapt the organism’s behavior to a new environment

    Growth differentiation factor-15 and prediction of cancer-associated thrombosis and mortality: a prospective cohort study

    Full text link
    Background Patients with cancer are at increased risk of venous thromboembolism (VTE) and arterial thromboembolic/thrombotic events (ATEs). Growth differentiation factor-15 (GDF-15) improves cardiovascular risk assessment, but its predictive utility in patients with cancer remains undefined. Objectives To investigate the association of GDF-15 with the risks of VTE, ATE, and mortality in patients with cancer and its predictive utility alongside established models. Methods The Vienna Cancer and Thrombosis Study (CATS)—a prospective, observational cohort study of patients with newly diagnosed or recurrent cancer—which was followed for 2 years, served as the study framework. Serum GDF-15 levels at study inclusion were measured, and any association with VTE, ATE, and death was determined using competing risk (VTE/ATE) or Cox regression (death) modeling. The added value of GDF-15 to established VTE risk prediction models was assessed using the Khorana and Vienna CATScore. Results Among 1531 included patients with cancer (median age, 62 years; 53% men), median GDF-15 levels were 1004 ng/L (IQR, 654-1750). Increasing levels of GDF-15 were associated with the increased risks of VTE, ATE, and all-cause death ([subdistribution] hazard ratio per doubling, 1.16 [95% CI, 1.03-1.32], 1.30 [95% CI, 1.11-1.53], and 1.57 [95% CI, 1.46-1.69], respectively). After adjustment for clinically relevant covariates, the association only prevailed for all-cause death (hazard ratio, 1.21; 95% CI, 1.10-1.33) and GDF-15 did not improve the performance of the Khorana or Vienna CATScore. Conclusion GDF-15 is strongly associated with survival in patients with cancer, independent of the established risk factors. While an association with ATE and VTE was identified in univariable analysis, GDF-15 was not independently associated with these outcomes and failed to improve established VTE prediction models

    Long-term imaging reveals behavioral plasticity during C. elegans dauer exit

    Get PDF
    BACKGROUND : During their lifetime, animals must adapt their behavior to survive in changing environments. This ability requires the nervous system to undergo adjustments at distinct temporal scales, from short-term dynamic changes in expression of neurotransmitters and receptors to longer-term growth, spatial and connectivity reorganization, while integrating external stimuli. The nematode Caenorhabditis elegans provides a model of nervous system plasticity, in particular its dauer exit decision. Under unfavorable conditions, larvae will enter the non-feeding and non-reproductive stress-resistant dauer stage and adapt their behavior to cope with the harsh new environment, with active reversal under improved conditions leading to resumption of reproductive development. However, how different environmental stimuli regulate the exit decision mechanism and thereby drive the larva's behavioral change is unknown. To fill this gap and provide insights on behavioral changes over extended periods of time, we developed a new open hardware method for long-term imaging (12h) of C. elegans larvae. RESULTS: Our WormObserver platform comprises open hardware and software components for video acquisition, automated processing of large image data (> 80k images/experiment) and data analysis. We identified dauer-specific behavioral motifs and characterized the behavioral trajectory of dauer exit in different environments and genetic backgrounds to identify key decision points and stimuli promoting dauer exit. Combining long-term behavioral imaging with transcriptomics data, we find that bacterial ingestion triggers a change in neuropeptide gene expression to establish post-dauer behavior. CONCLUSIONS: Taken together, we show how a developing nervous system can robustly integrate environmental changes activate a developmental switch and adapt the organism's behavior to a new environment. WormObserver is generally applicable to other research questions within and beyond the C. elegans field, having a modular and customizable character and allowing assessment of behavioral plasticity over longer periods
    • …
    corecore