4 research outputs found

    Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level

    Get PDF
    Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded worldwide. By triggering cascading effects from the individual organism to the community-and ecosystem level, oxygen depletions threaten marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea (Mediterranean). We experimentally induced small-scale anoxia with a benthic chamber in 24m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location) and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups). Most atypical (stress) behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (< 2mLO(2) L-1), the emergence of polychaetes on the sediment surface with moderate hypoxia (< 1mLO(2) L-1), the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (< 0.5mLO(2) L-1) and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, for example the circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra-and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator-prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i. e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plan

    Ejaculate allocation in Brachyura: What do males of Metacarcinus edwardsii respond to?

    No full text
    In polygynous species, the sperm economy hypothesis predicts that males can adjust the amount of their ejaculate during copulation in response to (1) individual traits of females according to potential female fecundity, (2) future mating opportunities, and (3) risk of sperm competition. We tested this hypothesis in the crab Metacarcinus edwardsii by performing laboratory mating experiments to compare the response of males (sperm number and ejaculate weight delivered) in 3 sex-ratio scenarios: (1) equal, 1 female:1 male; (2) male-biased, 1 female:2 males; and (3) female-biased, 2 females:1 male. First, we determined if any variable, or an interaction between variables, could explain the variation in sperm or ejaculate amount delivered under an equal sex ratio. Second, we contrasted the ejaculate allocation among different sex-ratio scenarios. Under an equal sex ratio, males of M. edwardsii did not adjust their ejaculate allocation in response to any female trait. Male size was positively related to ejaculate delivery, indicating that the pair of vasa deferentia has ejaculate reserves that scale exponentially with male size. However, larger males delivered disproportionally more seminal fluid than sperm. Under a female-biased sex ratio, males did not show plasticity in their ejaculate allocation, but they increased their ejaculate investment (23%) per female under a male-biased sex ratio (i.e. risk of sperm competition). M. edwardsii presented a low level of ejaculate allocation, responding only when competitive males were perceived. In species with trans-molt sperm retention and long ejaculate storage, the risk of sperm competition is present all the time; therefore, males do not economize ejaculate even if more receptive females are available
    corecore