323 research outputs found

    Dissociation mechanism for solid-phase epitaxy of silicon in the Si <100>/Pd2Si/Si (amorphous) system

    Get PDF
    Solid-phase epitaxial growth (SPEG) of silicon was investigated by a tracer technique using radioactive 31Si formed by neutron activation in a nuclear reactor. After depositing Pd and Si onto activated single-crystal silicon substrates, Pd2Si was formed with about equal amounts of radioactive and nonradioactive Si during heating at 400 °C for 5 min. After an 1-sec annealing stage (450-->500 °C in 1 h) this silicide layer, which moves to the top of the sample during SPEG, is etched off with aqua regia. From the absence of radioactive 31Si in the etch, it is concluded that SPEG takes place by a dissociation mechanism rather than by diffusion

    Growth mechanism for solid-phase epitaxy of Si in the Si <100>/Pd2Si/Si(amorphous) system studied by a radioactive tracer technique

    Get PDF
    A tracer technique using radioactive 31Si (T1/2=2.62 h) was used to study solid-phase epitaxial growth (SPEG) of silicon. After depositing Pd and Si onto single-crystal substrates which had been activated in a nuclear reactor, Pd2Si was formed with about equal amounts of radioactive and nonradioactive silicon during heating at 400 °C for 5 min. After a second annealing stage (450 °C-->500 °C in 1 h) the silicide layer which moves to the top of the sample during SPEG was etched off with aqua regia. From the absence of radioactive 31Si in the etchant solution it is concluded that SPEG takes place by dissociation of the Pd2Si layer at the single-crystal interface to provide free Si for epitaxial growth, while new silicide is formed at the interface with the amorphous Si. These results were confirmed by evaporating radioactive silicon onto nonactivated silicon substrates before evaporation of Pd and stable amorphous Si and by measuring the activity in the SPEG sample before and after etching off the silicide layer

    Gravitational Collapse of Massless Scalar Field with Negative Cosmological Constant in (2+1) Dimensions

    Full text link
    The 2+1-dimensional geodesic circularly symmetric solutions of Einstein-massless-scalar field equations with negative cosmological constant are found and their local and global properties are studied. It is found that one of them represents gravitational collapse where black holes are always formed.Comment: no figure

    Genetic analysis of wheat rust resistance genes segregating in a Kariega x Avocet S population

    Get PDF
    Complete adult plant resistance (APR) to stripe rust of the wheat cultivar Kariega was previously ascribed to two major quantitative trait loci (QTL) on chromosomes 2B and 7D and three minor QTL. In the present study the Kariega x Avocet S doubled haploid population was increased from 150 to 254 individuals and the map improved by adding Diversity Array Technology (DArT) markers. Additional field and greenhouse phenotypic data for stripe rust were collected. The major QTL regions detected previously were validated, but different minor QTL compared to the previous study were identified. In the field, the chromosome 2B QTL region explained more of the phenotypic variance for host reaction type scores (RT), compared to the 7D QTL region. For the field leaf area infected score (LAI) both the major QTL regions explained more variance over time. A minor QTL on chromosome 4A of Kariega was consistently detected for LAI (up to 25.9%) and the two early RT (up to 12.2%) scores. In addition we used an accelerated greenhouse scoring method for APR to stripe rust, which detected both major QTL, the 4A QTL and another minor QTL. Using an adult plant screening method and different pathotypes of Puccinia triticina, several leaf rust resistance genes have been detected in the mapping population. This study has been valuable in confirming and expanding information on the leaf rust resistance genes and QTL for adult plant resistance to stripe rust in wheat

    Aperiodic optical variability of intermediate polars - cataclysmic variables with truncated accretion disks

    Full text link
    We study the power spectra of the variability of seven intermediate polars containing magnetized asynchronous accreting white dwarfs, XSS J00564+4548,IGR J00234+6141, DO Dra, V1223 Sgr, IGR J15094-6649, IGR J16500-3307 and IGR J17195-4100, in the optical band and demonstrate that their variability can be well described by a model based on fluctuations propagating in a truncated accretion disk. The power spectra have breaks at Fourier frequencies, which we associate with the Keplerian frequency of the disk at the boundary of the white dwarfs' magnetospheres. We propose that the properties of the optical power spectra can be used to deduce the geometry of the inner parts of the accretion disk, in particular: 1) truncation radii of the magnetically disrupted accretion disks in intermediate polars, 2) the truncation radii of the accretion disk in quiescent states of dwarf novaeComment: Accepted for publication in A&

    Next to leading order spin-orbit effects in the motion of inspiralling compact binaries

    Full text link
    Using effective field theory (EFT) techniques we calculate the next-to-leading order (NLO) spin-orbit contributions to the gravitational potential of inspiralling compact binaries. We use the covariant spin supplementarity condition (SSC), and explicitly prove the equivalence with previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the direct application of the Newton-Wigner SSC at the level of the action leads to the correct dynamics using a canonical (Dirac) algebra. This paper then completes the calculation of the necessary spin dynamics within the EFT formalism that will be used in a separate paper to compute the spin contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To appear in Class. Quant. Gra

    HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    No full text
    Immune control of viral infections is heavily dependent on helper CD4(+) T cell function. However, the understanding of the contribution of HIV-specific CD4(+) T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4(+) T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4(+) T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4(+) T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4(+) T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4(+) T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4(+) T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4(+) T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4(+) T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4(+) T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4(+) T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4(+) T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4(+) T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections

    Mass-Energy and Momentum Extraction by Gravitational Wave Emission in the Merger of Two Colliding Black Holes: The Non-Head-On Case

    Full text link
    We examine numerically the post-merger regime of two Schwarzschild black holes in non head-on collision. Our treatment is made in the realm of non-axisymmetric Robinson-Trautman spacetimes which are appropriate for the description of the system. Characteristic initial data for the system are constructed and the Robinson-Trautman equation is integrated using a numerical code based on the Galerkin spectral method. The collision is planar, restricted to the plane determined by the directions of the two initial colliding black holes, with the net momentum fluxes of gravitational waves confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole. Our analysis is based on the Bondi-Sachs four momentum conservation laws. Head-on collisions and orthogonal collisions constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction by gravitational waves. The momentum extraction and the pattern of the momentum fluxes, as a function of the incidence angle, are examined. The momentum extraction characterizes a regime of strong deceleration of the system. The angular pattern of gravitational wave signals is also examined. They are typically bremsstrahlung for early times emission. Gravitational waves are also emitted outside the plane of collision but this component has a zero net momentum flux. The relation between the incidence angle of collision and the exit angle of the remnant closely approximates a relation for inelastic collisions of classical particles in Newtonian dynamics.Comment: 18 pages, 12 Figures, published with slight modifications in Phys. Rev. D 85, 024003 (2012
    • …
    corecore