5,490 research outputs found

    Evaporation Channel as a Tool to Study Fission Dynamics

    Full text link
    The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis, since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particle, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the ^{32}S + ^{100}Mo reaction at E_{lab}= 200 MeV. By comparing an extended set of evaporation channel observables the limits of the statistical model and the large improvement coming by using a dynamical model are evidenced. The importance of using a large angular covering apparatus to extract the observable is stressed. The opportunity to measure more sensitive observables by a new detection device in operation at LNL are also discussed.Comment: v1: 7 pages, 6 figure

    Caspase-independent programmed cell death triggers Ca2PO4 deposition in an in vitro model of nephrocalcinosis

    Get PDF
    We provide evidence of caspase-independent cell death triggering the calcification process in GDNF-silenced HK-2 cells

    Prioritized motion-force control of constrained fully-actuated robots: "Task Space Inverse Dynamics"

    Get PDF
    Pre-print submitted to "Robotics and Autonomous Systems"We present a new framework for prioritized multi-task motion-force control of fully-actuated robots. This work is established on a careful review and comparison of the state of the art. Some control frameworks are not optimal, that is they do not find the optimal solution for the secondary tasks. Other frameworks are optimal, but they tackle the control problem at kinematic level, hence they neglect the robot dynamics and they do not allow for force control. Still other frameworks are optimal and consider force control, but they are computationally less efficient than ours. Our final claim is that, for fully-actuated robots, computing the operational-space inverse dynamics is equivalent to computing the inverse kinematics (at acceleration level) and then the joint-space inverse dynamics. Thanks to this fact, our control framework can efficiently compute the optimal solution by decoupling kinematics and dynamics of the robot. We take into account: motion and force control, soft and rigid contacts, free and constrained robots. Tests in simulation validate our control framework, comparing it with other state-of-the-art equivalent frameworks and showing remarkable improvements in optimality and efficiency

    Partial Force Control of Constrained Floating-Base Robots

    Get PDF
    Pre-print of paper presented at Intelligent Robots and Systems (IROS 2014), IEEE International Conference on, Chicago, USA, 2014Legged robots are typically in rigid contact with the environment at multiple locations, which add a degree of complexity to their control. We present a method to control the motion and a subset of the contact forces of a floating-base robot. We derive a new formulation of the lexicographic optimization problem typically arising in multitask motion/force control frameworks. The structure of the constraints of the problem (i.e. the dynamics of the robot) allows us to find a sparse analytical solution. This leads to an equivalent optimization with reduced computational complexity, comparable to inverse-dynamics based approaches. At the same time, our method preserves the flexibility of optimization based control frameworks. Simulations were carried out to achieve different multi-contact behaviors on a 23-degree-offreedom humanoid robot, validating the presented approach. A comparison with another state-of-the-art control technique with similar computational complexity shows the benefits of our controller, which can eliminate force/torque discontinuities

    Raman Microspectroscopy Analysis in the Treatment of Acanthamoeba Keratitis

    Get PDF
    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment

    Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study

    Get PDF
    Percutaneous radiofrequency thermal ablation (RTA) was reported as an effective tool for the management of thyroid nodules (TNs). The aim of this study was to investigate the effects of RTA and to establish whether they were treatment-related by comparison with a matched, untreated control group

    RELAP5-3D thermal hydraulic analysis of the target cooling system in the SPES experimental facility

    Get PDF
    The SPES (Selective Production of Exotic Species) experimental facility, under construction at the Italian National Institute of Nuclear Physics (INFN) Laboratories of Legnaro, Italy, is a second generation Isotope Separation On Line (ISOL) plant for advanced nuclear physic studies. The UCx target-ion source system works at temperature of about 2273 K, producing a high level of radiation (10^5 Sv/h), for this reason a careful risk analysis for the target chamber is among the major safety issues. In this paper, the obtained results of thermofluid-dynamics simulations of accidental transients in the SPES target cooling system are reported. The analysis, performed by using the RELAP5-3D 2.4.2 qualified thermal-hydraulic system code, proves good safety performance of this system during different accidental conditions

    Microstructural and morphological properties of homoepitaxial (001)ZnTe layers investigated by x-ray diffuse scattering

    Full text link
    The microstructural and morphological properties of homoepitaxial (001)ZnTe layers are investigated by x-ray diffuse scattering. High resolution reciprocal space maps recorded close to the ZnTe (004) Bragg peak show different diffuse scattering features. One kind of cross-shaped diffuse scattering streaks along directions can be attributed to stacking faults within the epilayers. Another kind of cross-shaped streaks inclined at an angle of about 80deg with respect to the in-plane direction arises from the morphology of the epilayers. (abridged version

    Prioritized Optimal Control

    Get PDF
    Pre-print of the paper presented at Robotics and Automation (ICRA), IEEE International Conference on, Hong Kong, China, 2014This paper presents a new technique to control highly redundant mechanical systems, such as humanoid robots. We take inspiration from two approaches. Prioritized control is a widespread multi-task technique in robotics and animation: tasks have strict priorities and they are satisfied only as long as they do not conflict with any higher-priority task. Optimal control instead formulates an optimization problem whose solution is either a feedback control policy or a feedforward trajectory of control inputs. We introduce strict priorities in multi-task optimal control problems, as an alternative to weighting task errors proportionally to their importance. This ensures the respect of the specified priorities, while avoiding numerical conditioning issues. We compared our approach with both prioritized control and optimal control with tests on a simulated robot with 11 degrees of freedom
    corecore