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Abstract— Legged robots are typically in rigid contact with
the environment at multiple locations, which add a degree
of complexity to their control. We present a method to
control the motion and a subset of the contact forces of
a floating-base robot. We derive a new formulation of the
lexicographic optimization problem typically arising in multi-
task motion/force control frameworks. The structure of the
constraints of the problem (i.e. the dynamics of the robot)
allows us to find a sparse analytical solution. This leads to an
equivalent optimization with reduced computational complex-
ity, comparable to inverse-dynamics based approaches. At the
same time, our method preserves the flexibility of optimization
based control frameworks. Simulations were carried out to
achieve different multi-contact behaviors on a 23-degree-of-
freedom humanoid robot, validating the presented approach.
A comparison with another state-of-the-art control technique
with similar computational complexity shows the benefits of our
controller, which can eliminate force/torque discontinuities.

I. INTRODUCTION

Control of floating-base mechanical systems (e.g. legged
robots) is still a main concern for the control community.
One of the reasons accounting for this on-going research
is that floating-base systems are underactuated, hence they
cannot be feedback-linearized [1]. The problem becomes
even more complex when these systems are constrained,
that is their dynamics is subject to a set of (possibly time-
varying) nonlinear constraints. This is the typical case for
legged robots, whose motion is constrained by rigid contacts
with the ground.

Sentis [2] and Park [3] presented a framework for pri-
oritized motion and force control of humanoid robots. This
framework builds on the idea of Operational Space dynamics
[4], resulting in a massive use of dynamics quantity such
as the joint space mass matrix [5]. Righetti et al. proposed
an alternative approach [6] based on recent results from
analytical dynamics [7]. They projected the robot dynamics
into the nullspace of the constraints, using a geometric
projector. The projection cancels the constraint forces from
the system dynamics, removing any need of force measure-
ments. These geometric projectors are faster to compute than
those depending on inertial quantities used in [2], [3], so
the resulting control laws are simpler and computationally
more efficient. Mistry et al. [8] presented an in-between
approach, extending the Operational Space formulation [4]
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Fig. 1: Test 1. The robot made contact on the yellow wall;
then it moved its COM towards the wall and back.

to underactuated constrained mechanical systems. This new
formulation is less efficient than [6] because it uses the
inverse of the robot mass matrix.

These approaches based on the elimination of the contact
forces present two major drawbacks. First, in general they
can not guarantee bounded contact forces. Second, every time
the robot makes or breaks a contact, the discontinuity in
the constraint set results in discontinuous control torques.
These discontinuities may generate jerky movements or, even
worse, make the robot slip and fall.

Rather than finding an analytical solution of the control
problem, an alternative approach [9] is to use a Quadratic
Programming (QP) solver. This allows to include inequality
constraints into the problem formulation, which can model
control tasks and physical constraints (e.g. joint limits, fric-
tion cones). For instance, Saab et al. [10] used inequalities
to account for the Zero Moment Point (ZMP) conditions
on a walking humanoid. While this technique is appealing,
solving a cascade of QPs with inequality constraints can
be critical from a computational standpoint. Escande et al.
[11] reached a computation time of 1 ms on an inverse-
kinematics problem — at the price of seldom suboptimal so-
lutions. However, they did not consider the inverse-dynamics
problem (as we do in this work), which has more than
twice the number of variables and, consequently, is more
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computationally demanding. In another recent work Herzog
et al. [12] succeeded in controlling their robot at 1 KHz using
an inverse-dynamics formulation. Nonetheless the robot had
only 14 Degrees of Freedom (DoFs) and the CPU had 3.4
GHz; in case of more DoFs or slower CPU their method
may still be too slow.

The main contribution of this paper is a convenient refor-
mulation of the constrained optimization problem that arises
in multi-task control frameworks such as [9], [10], [11],
[13]. We derive an analytical sparse solution of the problem
constraints, which allows us to convert the original problem
into two smaller independent unconstrained problems. The
resulting method has a computational cost similar to inverse-
dynamics based methods [6], while allowing for force control
and presenting the flexibility of optimization-based tech-
niques. The paper is structured as follows. Section II presents
the theoretical results. Section III validates the presented
control laws on a simulated 23-DoF humanoid robot. Section
IV summarizes the presented results and illustrates some
future extensions.

II. METHOD

This section introduces the analyzed control problem and
motivates the need for a more efficient formulation. Then
we derive an analytical solution of the problem constraints,
which allows us to simplify the optimization. Finally we an-
alyze the computational complexity of the new formulation,
and we provide some insights into the physical principles
that lie at the basis of our analytical work.

A. Notation

The state of a floating-base rigid robot with n joints can be
expressed as a vector q ∈ Rn+6, where the first 6 elements
represent the position and orientation of the floating base
(e.g. the hip link) and the remaining n elements represent the
joint angles. Suppose that the robot is subject to a set of k
nonlinear constraints: e(q, q̇, t) = 0, which for instance could
be due to rigid contacts. By differentiating the constraints
(once or twice, depending on whether they are holonomic)
we can express them at acceleration level. We can then write
the equations of motion of the system as:

M(q)q̈ + h(q, q̇)− Jc(q)>fc = S>τ (1a)
Jc(q)q̈ = cc(q, q̇, t), (1b)

where M ∈ R(n+6)×(n+6) is the joint space mass ma-
trix, q̈ ∈ Rn+6 contains the joint and base accelerations,
h ∈ Rn+6 contains the gravity, centrifugal and Coriolis
forces, S =

[
0n×6 In×n

]
∈ Rn×(n+6) is the joint selection

matrix, τ ∈ Rn are the joint torques, Jc = ∂e
∂q ∈ Rk×(n+6)

is the constraint Jacobian, fc ∈ Rk are the constraint forces
and cc ∈ Rk is a term resulting from the derivation of
the nonlinear constraints e(q, q̇, t). We can rewrite (1a) and
(1b) as a unique affine function Dy = d of the variable
y> =

[
q̈> f>c τ>

]
. We now split the constraints into

two subsets: the controlled constraints (with Jacobian Jf ∈

Rkf×(n+6) and forces ff ∈ Rkf ), and the supporting con-
straints (with Jacobian Js ∈ Rks×n+6 and forces fs ∈ Rks ),
so that:

J>c =
[
J>f J>s

]
, f>c =

[
f>f f>s

]
, c>c =

[
c>f c>s

]
This division is motivated by the fact that we mean to directly
control ff , while we use fs only to support the system.
We consider that Jf and Js may be rank deficient, i.e.
rank(Jf ) = k̂f 6= kf , rank(Js) = k̂s 6= ks, but we assume
that the two sets of constraints are linearly independent,
i.e. rank(Jc) = k̂ = k̂f + k̂s. We finally introduce our
notation for the basis matrices with an example: we represent
with Zs ∈ R(n+6)×(n+6−k̂s) an orthonormal basis of the
nullspace of Js, and with Us ∈ R(n+6)×k̂s an orthonormal
basis of the range of Js. Similarly, the basis matrices of Jf ,
Jc, JfZs and ZsS> are denoted by the subscripts f , c, fs
and ss, respectively.

B. Multi-Task Motion and Force Control
We consider an arbitrary number N of control tasks

that can be represented as convex quadratic functions
gi(y) = ||Aiy − ai||2 — in particular, functions of q̈ and ff .
Moreover, we suppose that tasks have different priorities,
that is, in case of conflict, tasks with higher priority should
be satisfied at the expenses of the tasks with lower priority.
We can then formulate the multi-task control problem as a
cascade of constrained optimizations [11]:

lexmin
y∈R2n+k+6

{g1(y), . . . , gN (y)}

s.t. Dy = d
(2)

where, at the optimum, each cost function gi(y) is minimized
with respect to a lexicographic order: it is not possible to
decrease an objective gi without increasing an objective gj
with higher priority (i.e. j < i). Once we have found the
solution y∗, we can command to the motors the joint torques
contained in it.

Problem (2) is a generic formulation of the operational-
space inverse-dynamics problem. This formulation consists
of N sequential optimizations, each with 2n+k+6 variables
and n + 6 + k equality constraints. While we could use a
generic QP solver to compute the lexicographic optimum
[14], [15], the structure of the problem has a specific shape
that we can use to simplify the computation. Some parts
of the structure was used in [16], [8], with some specific
hypothesis. We propose here a more generic though more
efficient formulation to fully exploit the problem sparsity and
the algorithmic structure.

We start by considering that all the solutions of (1) take
the following form:

y = y∗ +KzD, (3)

where y∗ is such that Dy∗ = d, the columns of K span
the nullspace of D and zD is a free parameter. A numerical
solver typically computes y∗ and K through a decomposi-
tion1 of the matrix D, substitutes (3) inside the cost functions

1The classical nullspace approach uses y∗ = D†d and K = ZD , i.e. an
orthogonal basis of the nullspace of D



of (2) and solves the resulting unconstrained problem with
variable zD ∈ Rn+k−k̂ [9]. However, the decomposition
of D is costly and, in general, this numerical approach
results in a dense K. We find an analytical expression of
the solutions of (1), so we do not need to decompose D.
The analytical solution results in a sparse K, which allows
us to reformulate (2) as two independent unconstrained
optimizations. Moreover, the proposed formulation does not
require the computation of the mass matrix M .

C. Analytical Sparse Solution of the Constraints

The solution that we are about to derive builds on the
assumption that the mechanical system is sufficiently con-
strained.

Definition We say that a constrained mechanical system is
sufficiently constrained if the Jacobian of the supporting
constraints satisfies this condition:

rank(JsS̄
>) = 6, (4)

where S̄ =
[
I6×6 O6×n

]
.

To solve (1) we start by solving (1b):

q̈ = J†c cc + Zczc, (5)

where zc ∈ Rn+6−k̂ is a free parameter. Now we substitute
(5) in (1a) and we project the resulting equation in the
nullspace of the supporting constraints:

Z>s (M(J†c + Zczc) + h− J>f ff ) = Z>s S
>τ (6)

Since the system is sufficiently constrained Z>s S
> is full-

row rank (see [17] for the proof), hence for any value of ff
and zc we can find a value of τ that satisfies (6), that is:

τ = (Z>s S
>)†Z>s (M(J†c +Zczc)+h−J>f ff )+Zsszss, (7)

where zss ∈ Rk̂s−6 is a free parameter. Finally, since Jf may
be rank deficient, we switch to a minimal representation of
ff in terms of a free parameter zf ∈ Rk̂f :

ff = Ufzf + (I − UfU>f )f̂f , (8)

where f̂f is a measurement of ff , which is necessary only
if Jf is rank deficient. Using (5), (7) and (8) we can write:

q̈
ff
fs
τ

 =


q̈∗

f∗f
f∗s
τ∗

+


Kcc 0 0

0 Kff 0
Ksc Ksf Ksτ

Kτc Kτf Kττ


 zczf
zss

 , (9)

with:

q̈∗ = J†c cc, f∗f = (I − UfU>f )f̂f

τ∗ = (ZsS
>)†Zs(MJ†c cc + h− J>f f∗f )

Kcc = Zc, Kff = Uf , Kττ = Zss

Kτc = (ZsS
>)†ZsMZc

Kτf = −(ZsS
>)†ZsJ

>
f Uf

We do not report here the values of Ksc,Ksf ,Ksτ and f∗s
because we do not use them in our formulation. Finally, (9)
is a sparse analytical representation of the solutions of (1).

D. New Problem Formulation

Using (9) we can now express problem (2) in terms of
the new variables zc, zf , zss. A clear decoupling appears
in (9): q̈ (the motion) only depends on zc, while ff (the
force) only depends on zf . Since by assumption the tasks
gi(y) only depend on q̈ and ff , we can exploit this de-
coupling. Without loss of generality we assume that each
control task is function of either ff or q̈ (if not, we can
split the task into two separate tasks with arbitrary order).
The task matrices Ai have then the following structure
Ai =

[
Aqi Afi 0mi×ks+n

]
, and we define If and Iq as

the set of indexes of the force tasks and the motion tasks,
respectively.

Under these conditions, the solutions of (2) can be com-
puted through (7), where zss ∈ Rk̂s−6 is an arbitrary vector,
whereas zf ∈ Rk̂f and zc ∈ Rn+6−k̂ are the solutions of
two independent lexicographic optimizations. The first opti-
mization finds the desired constraint forces by minimizing
the cost functions:

gi(zf ) = ||Afi Ufzf − ai +Afi (I − UfU>f )f̂f ||2, ∀i ∈ If
(10)

The second optimization finds the desired joint accelerations
by minimizing:

gi(zc) = ||AqiZczc +AqiJ
†
c cc − ai||2, ∀i ∈ Iq (11)

E. Computational Complexity

Even though the new optimizations (10) and (11) have less
variables and constraints, we must consider the cost incurred
in reformulating the problem. This cost is dominated by the
computation of the following five matrices:

Zs, Uf , Zc, J†c , (Z>s S
>)†Z>s

We can get the first two matrices by computing an SVD 2

of Js and Jf . Then, to compute Zc and J†c we only need to
decompose JfZs and exploit the following relationships:

J+
c =

[
Zs(JfZs)

† (I − Zs(JfZs)†Jf )J†s
]
, Zc = ZfsZs

Finally, thanks to the assumption (4), we only need to
decompose S̄J>s to compute the last matrix:

(Z>s S
>)†Z>s =

[
−SJ>s (S̄J>s )† I

]
Considering that an SVD of an m× n matrix (with m < n)
has a cost O(m2n), and that typically n > k, the total
expected cost for decomposing these four matrices is:

O((n+6)(k2s+k2f )+(n+6−k̂s)k2f+36ks) = O(n(k2s+2k2f ))

Conversely, decomposing the constraint matrix D of (2) has
a cost O((n+ k)2(2n+ k)). We can gather that the cost of
our formulation is always less than the cost of resolution of
the original constraints.

Moreover, our formulation has two additional advantages.
First, there is no need to compute the mass matrix of the
robot M because we can compute (7) using the Recursive

2Alternatively we can use any other complete rank-revealing decomposi-
tion, e.g. the Complete Orthogonal Decomposition [18]



Newton-Euler Algorithm (RNEA) [5]. Second, the force and
the motion hierarchies are independent, hence they can be
solved in parallel.

F. Physical Interpretation

The condition (4) has been erroneously approximated in
previous works with the less strict condition rank(Js) ≥ 6.
Actually it is true that (4) implies that rank(Js) ≥ 6, but
not the opposite — for instance, a point-foot quadruped
with two feet on the ground verifies the second condition,
but not the first one. The intuitive reason why we need at
least six independent constraint forces that we are willing
not to control is that these constraints compensate for the 6
degrees of underactuation of the system. In the constraint-
consistent space the system is then fully-actuated, because
the supporting constraint forces can accelerate the floating
base in all six directions. In practice, a humanoid robot
standing with (at least) one foot flat on the ground always
satisfies this condition — in fact we can see it as a fixed-base
manipulator. This allows us to feedback-linearize the system
and decouple kinematics and dynamics.

When the robot is not sufficiently constrained (i.e. (4) is
not satisfied), we cannot apply the proposed formulation as it
is. In that situation the system loses the complete control over
its momentum, hence we can no longer decouple kinematics
and dynamics. Nonetheless, we can use the same insights
to find another convenient formulation for that case. This is
subject of ongoing work.

III. TESTS

This section presents two simulation tests that validate our
control framework and demonstrate its potential and benefits.

A. Experimental Setup

We carried out the tests on a customized version of the
Compliant huManoid (CoMan) simulator [19]. Table I lists
the parameters of the simulation environment.

TABLE I: Simulation parameters.

Contact stiffness 2 · 105N/m Contact damping 103Ns/m
Integration relative
tolerance

10−3 Integration abso-
lute tolerance

10−6

Integration scheme ode23t [20] Robot DoFs 23+6
Control frequency 1 KHz CPU 2.83 GHz

1) Motion Control: To control an operational point
x(q) ∈ Rm of the robot we use the kinematic relationship:

Jq̈ = ẍ− J̇ q̇,

where J ∈ Rm×n+6 is the Jacobian associated to x. Since the
presented control framework works at acceleration level, a
drift is likely to occur. To prevent deviations from the desired
trajectory and to ensure disturbance rejection, we computed
the desired task accelerations ẍ∗ ∈ Rm with a proportional-
derivative feedback control law:

ẍ∗ = ẍr +Kd(ẋr − ẋ) +Kp(xr − x),

where xr(t), ẋr(t), ẍr(t) ∈ Rm are the position-velocity-
acceleration reference trajectories, whereas Kd ∈ Rm×m and
Kp ∈ Rm×m are the diagonal positive-definite matrices. To
generate xr(t), ẋr(t), ẍr(t) we used the approach presented
in [21], which provides approximately minimum-jerk trajec-
tories. We set all the proportional gains Kp = 10s−2, and
all the derivative gains Kd = 5s−1.

2) Supporting Force Optimization: When the matrix
Z>s S

> has a nontrivial nullspace, there are infinite joint
torques that generate the same controlled forces and joint
accelerations:

τ1 =M(J†c + Zczc) + h− J>f Ufzf
τ =(Z>s S

>)†WZ>s τ1 + ZssZ
>
ssτ0,

where (.)†W = W
1
2 (.W

1
2 )† indicates a weighted pseudoin-

verse, with W ∈ Rn×n being an arbitrary positive-definite
matrix and τ0 ∈ Rn an arbitrary vector. Any secondary
objective can be considered by selecting arbitrary W and τ0.
Following the approach of Righetti et al. [22], in our tests we
have chosen to minimize a cost of the form ||f>s W−1f fs||2.
This is achieved by setting:

W =(S(J†sW
−1
f J>†s + ZsZ

>
s )S>)−1

τ0 =WS(J†sW
−1
f J>†s + ZsZ

>
s )τ1

(12)

The generalized inverse weighted by W in the previous
equation can be brought back to the pseudoinverse solution
(6) using the fact that A†W = (I − ZA(WZA)†W )A† [23].
Even with this extension we do not need M to compute τ ,
but we can just use the RNEA.

B. Computation Times

To understand the practical implications of the proposed
formulation we carried out a test for a typical case: n = 23,
ks = 6, kf = 12. We measured the computation time
taken to convert the original constrained problem into an
unconstrained optimization. With our approach, the most
expensive operations in this phase are the four matrix decom-
positions discussed in Section II-E. Using the linear algebra
C++ library Eigen[24], we measured an average time of
0.23 ms for computing the four SVDs. Conversely, with the
standard numerical approach, we measured an average time
of 4.3 ms for decomposing the matrix D. Considering that
high-performance control loops require computation times
below 1 ms, the observed 19× speed-up could be critical for
implementation on a real platform.

C. Test 1 - Multi-contact force control

In this test the robot made contact with a rigid wall using
its right hand (see Fig. 1), and it regulated the contact force
along the wall normal direction to 20 N. The contact forces
at the feet were considered as supporting forces, so they
were not controlled. After making contact, we shifted the
desired position of the Center Of Mass (COM) towards the
right foot of the robot (i.e. along the y direction), so that
the robot leaned against the wall, exploiting the additional
support provided by the contact on its hand. We report here
the overall control hierarchy, in priority order:



(a) 0 s: COM in
the middle.

(b) 2 s: COM over
left foot, about to
lift right foot.

(c) 3 s: stepping
forward.

(d) 4 s: ground im-
pact.

(e) 6 s: COM in
the middle.

(f) 8 s: COM over
right foot.

Fig. 2: Test 2. The robot performing a step with its right
foot.

• constraints, both feet (12 DoFs);
• force control, right hand (1 DoF);
• position control, COM ground projection (2 DoFs);
• position control, posture (29 DoFs).

The Root Mean Square Error (RMSE) for the force task was
about 0.01 N, while for the COM task it was about 0.6 mm.
This kind of behavior is difficult to achieve with previous
techniques [6], [2] that were mainly designed for locomotion
and do not allow for direct control of interaction forces.

D. Test 2 - Walking

This test tackles the switching between different constraint
phases, which, for instance, occurs when moving from single
to double support during walking (see Fig. 2). These hard
constraint switches cause discontinuities in the control ac-
tion, which may result in jerky movements or instability.
We show how partial force control can eliminate these
discontinuities.

The key idea is to control the forces associated to the
constraints that are about to be added to/removed from the
constraint set. Namely, before lifting the right foot off the
ground, we regulate its contact force to zero, while moving
the COM over the left foot. Similarly, when the right foot
impacts the ground, we make its contact force slowly raise
from zero to an appropriate value (i.e. the weight of the
robot), while moving the COM over the right foot. We report
here the overall control hierarchy, in priority order:
• constraints, either both feet (12 DoFs) or left foot (6

DoFs);
• force control, right foot (6 DoFs);
• position control, COM ground projection (2 DoFs);
• position control, right foot (3 DoFs);

TABLE II: Timeline of Test 2 using partial force control.

Task 0− 2s 2− 4s 4− 6s 6− 8s

Constraints Left foot Left foot Left foot Both feet
Right foot wrench Decrease Increase
COM Move left Stay still Move

right
Move
right

Right foot pose Move
forward

TABLE III: Timeline of Test 2 without using partial force
control.

Task 0− 2s 2− 4s 4− 5s 5− 8s

Constraints Both feet Left foot Left foot Both feet
COM Move left Stay still Move

right
Move
right

Right foot pose Move
forward

• position control, posture (29 DoFs).

Table II describes which tasks/constraints were active during
the different phases of the test, and it briefly summarizes the
task references. For comparison, we performed the same test
using the method proposed in [6], which is similar from a
computational standpoint, but it does not allow to control the
contact forces. Table III reports the timeline of this second
test. In this case we had to reintroduce the constraints on the
right foot before 6 s (i.e. at 5 s) because at 5.5 s the robot
could no longer balance due to the lack of force on the right
foot.

Whenever there were more than six constraints (i.e.
during double-support phase), we used the technique de-
scribed in Section III-A.2 to minimize the moments
and the tangential forces at the feet. In particular, we
have set the weight matrix W−1f ∈ R12×12 to a di-
agonal matrix with entries

[
wl ∗ f−1R wl ∗ f−1L

]
, where

wl =
[
10 10 0.1 103 103 102

]
, and fR, fL are the

absolute values of the normal forces at the right and left
foot, respectively. In this way we penalized the tangential
moments the most, followed by the normal moments and the
tangential forces. Moreover, we penalized more forces and
moments at the foot on which the normal force was lower.
This was fundamental to maintain the Zero Moment Point
(ZMP) [25] inside the foot surface, especially when moving
the COM away from the central position.

Fig. 3 shows the different normal contact forces at the
right foot, obtained using the two approaches. The force
trajectory is almost continuous when using partial force
control, whereas there are large discontinuities at 2 s and 5 s
when we did not control the contact forces. Moreover, thanks
to partial force control, there is almost no discontinuity in
the foot ZMPs when breaking the contact (i.e. 2 s) and at
the switch of the number of constraints (i.e. 6 s). On the
contrary, when not controlling the foot force, there is a large
discontinuity in the ZMP of the left foot at 2 s and 5 s.
The force discontinuity at the impact (right before 4 s) is
independent of the control law: we commanded a desired
foot position below the ground level, so the foot impacts the



Fig. 3: Test 2. Comparison of the normal contact force at
the right foot when walking with/without using Partial Force
Control. At 2 s the robot lifts the right foot off the ground.
Right before 4 s the right foot makes contact with the ground.
At 5 s and 6 s the number of constraints changes from 6 to
12.

ground with nonzero velocity.

IV. CONCLUSIONS

We proposed a reformulation of the constrained opti-
mization arising in multi-task position/force control of con-
strained floating-base mechanical systems. We derived a
sparse analytical solution of the constraints of the problem,
which exploits the structure of the equations of motion of
the system. The resulting unconstrained optimization has
a reduced computational cost (about 20 times faster for
a humanoid) and completely decouples motion and force
control. Moreover, the new formulation does not require
calculating the mass matrix of the robot. Other techniques
based on inverse-dynamics projections [7] present similar
computational complexity, but they do not allow for direct
force control.

Our formulation is based on a physical insight in the
dynamics of floating-base systems: if the constraint forces
can accelerate the base in any direction, then the system can
be seen as fully actuated. We say that a robot that satisfies
this condition is sufficiently constrained. In practice, this
condition is often satisfied, as for the case of humanoids
having at least one foot in flat contact with the ground. To
validate the theoretical results and demonstrate two possi-
ble applications we carried out simulations on a 23-DoF
humanoid robot.

Future work consists of implementing the presented frame-
work on a real humanoid robot. Moreover, we are extending
the framework to deal with inequalities and with the case of
not sufficiently constrained systems.
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