232 research outputs found

    First-Order Type Effects in YBa2_2Cu3_3O6+x_{6+x} at the Onset of Superconductivity

    Full text link
    We present results of Raman scattering experiments on tetragonal (Y1yCay)Ba2Cu3O6+x{\rm (Y_{1-y}Ca_{y})Ba_{2}Cu_{3}O_{6+x}} for doping levels p(x,y)p(x,y) between 0 and 0.07 holes/CuO2_2. Below the onset of superconductivity at psc10.06p_{\rm sc1} \approx 0.06, we find evidence of a diagonal superstructure. At psc1p_{\rm sc1}, lattice and electron dynamics change discontinuously with the charge and spin properties being renormalized at all energy scales. The results indicate that charge ordering is intimately related to the transition at psc1p_{\rm sc1} and that the maximal transition temperature to superconductivity at optimal doping TcmaxT_{c}^{\rm max} depends on the type of ordering at p>psc1p>p_{\rm sc1}.Comment: 4 pages, 4 figure

    Electron interactions and charge ordering in La2x_{2-x}Srx_xCuO4_4

    Full text link
    We present results of inelastic light scattering experiments on single-crystalline La2x_{2-x}Srx_{x}CuO4_4 in the doping range 0.00x=p0.300.00 \le x=p \le 0.30 and Tl2_2Ba2_2CuO6+δ_{6+\delta} at p=0.20p=0.20 and p=0.24p=0.24. The main emphasis is placed on the response of electronic excitations in the antiferromagnetic phase, in the pseudogap range, in the superconducting state, and in the essentially normal metallic state at x0.26x \ge 0.26, where no superconductivity could be observed. In most of the cases we compare B1g_{1g} and B2g_{2g} spectra which project out electronic properties close to (π,0)(\pi,0) and (π/2,π/2)(\pi/2, \pi/2), respectively. In the channel of electron-hole excitations we find universal behavior in B2g_{2g} symmetry as long as the material exhibits superconductivity at low temperature. In contrast, there is a strong doping dependence in B1g_{1g} symmetry: (i) In the doping range 0.20p0.250.20 \le p \le 0.25 we observe rapid changes of shape and temperature dependence of the spectra. (ii) In La2x_{2-x}Srx_{x}CuO4_4 new structures appear for x<0.13x < 0.13 which are superposed on the electron-hole continuum. The temperature dependence as well as model calculations support an interpretation in terms of charge-ordering fluctuations. For x0.05x \le 0.05 the response from fluctuations disappears at B1g_{1g} and appears at B2g_{2g} symmetry in full agreement with the orientation change of stripes found by neutron scattering. While, with a grain of salt, the particle-hole continuum is universal for all cuprates the response from fluctuating charge order in the range 0.05p<0.160.05 \le p < 0.16 is so far found only in La2x_{2-x}Srx_{x}CuO4_4. We conclude that La2x_{2-x}Srx_{x}CuO4_4 is close to static charge order and, for this reason, may have a suppressed TcT_c.Comment: 17 pages, 15 figure

    An Investigation of Particle-Hole Asymmetry in the Cuprates via Electronic Raman Scattering

    Full text link
    In this paper we examine the effects of electron-hole asymmetry as a consequence of strong correlations on the electronic Raman scattering in the normal state of copper oxide high temperature superconductors. Using determinant quantum Monte Carlo simulations of the single-band Hubbard model, we construct the electronic Raman response from single particle Green's functions and explore the differences in the spectra for electron and hole doping away from half filling. The theoretical results are compared to new and existing Raman scattering experiments on hole-doped La2x_{2-x}Srx_{x}CuO4_{4} and electron-doped Nd2x_{2-x}Cex_{x}CuO4_{4}. These findings suggest that the Hubbard model with fixed interaction strength qualitatively captures the doping and temperature dependence of the Raman spectra for both electron and hole doped systems, indicating that the Hubbard parameter U does not need to be doping dependent to capture the essence of this asymmetry.Comment: 13 pages, 10 figure

    Matching Tree-Level Matrix Elements with Interleaved Showers

    Get PDF
    We present an implementation of the so-called CKKW-L merging scheme for combining multi-jet tree-level matrix elements with parton showers. The implementation uses the transverse-momentum-ordered shower with interleaved multiple interactions as implemented in PYTHIA8. We validate our procedure using e+e--annihilation into jets and vector boson production in hadronic collisions, with special attention to details in the algorithm which are formally sub-leading in character, but may have visible effects in some observables. We find substantial merging scale dependencies induced by the enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity ordering is removed the merging scale dependence is almost negligible. We then also find that the shower does a surprisingly good job of describing the hardness of multi-jet events, as long as the hardest couple of jets are given by the matrix elements. The effects of using interleaved multiple interactions as compared to more simplistic ways of adding underlying-event effects in vector boson production are shown to be negligible except in a few sensitive observables. To illustrate the generality of our implementation, we also give some example results from di-boson production and pure QCD jet production in hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes recommended by the refere

    Back-to-back azimuthal correlations in Z+jet events at high transverse momentum in the TMD parton branching method at next-to-leading order

    Full text link
    Azimuthal correlations in Z+jet production at large transverse momenta are computed by matching Parton - Branching (PB) TMD parton distributions and showers with NLO calculations via MCatNLO. The predictions are compared with those for dijet production in the same kinematic range. The azimuthal correlations Δϕ\Delta\phi between the Z boson and the leading jet are steeper compared to those in dijet production at transverse momenta O(100){\cal O}(100) GeV , while they become similar for very high transverse momenta O(1000){\cal O}(1000) GeV. The different patterns of Z+jet and dijet azimuthal correlations can be used to search for potential factorization - breaking effects in the back-to-back region, which depend on the different color and spin structure of the final states and their interferences with the initial states. In order to investigate these effects experimentally, we propose to measure the ratio of the distributions in Δϕ\Delta\phi for Z+jet - and multijet production at low and at high transverse momenta, and compare the results to predictions obtained assuming factorization. We examine the role of theoretical uncertainties by performing variations of the factorization scale, renormalization scale and matching scale. In particular, we present a comparative study of matching scale uncertainties in the cases of PB -TMD and collinear parton showers

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    Quantitative comparison of single- and two-particle properties in the cuprates

    Get PDF
    We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π,0)(\pi,0) points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page
    corecore