232 research outputs found
First-Order Type Effects in YBaCuO at the Onset of Superconductivity
We present results of Raman scattering experiments on tetragonal for doping levels between 0 and
0.07 holes/CuO. Below the onset of superconductivity at , we find evidence of a diagonal superstructure. At ,
lattice and electron dynamics change discontinuously with the charge and spin
properties being renormalized at all energy scales. The results indicate that
charge ordering is intimately related to the transition at and
that the maximal transition temperature to superconductivity at optimal doping
depends on the type of ordering at .Comment: 4 pages, 4 figure
Electron interactions and charge ordering in LaSrCuO
We present results of inelastic light scattering experiments on
single-crystalline LaSrCuO in the doping range and TlBaCuO at and . The main
emphasis is placed on the response of electronic excitations in the
antiferromagnetic phase, in the pseudogap range, in the superconducting state,
and in the essentially normal metallic state at , where no
superconductivity could be observed. In most of the cases we compare B
and B spectra which project out electronic properties close to
and , respectively. In the channel of electron-hole excitations
we find universal behavior in B symmetry as long as the material
exhibits superconductivity at low temperature. In contrast, there is a strong
doping dependence in B symmetry: (i) In the doping range we observe rapid changes of shape and temperature dependence of the
spectra. (ii) In LaSrCuO new structures appear for
which are superposed on the electron-hole continuum. The temperature dependence
as well as model calculations support an interpretation in terms of
charge-ordering fluctuations. For the response from fluctuations
disappears at B and appears at B symmetry in full agreement with
the orientation change of stripes found by neutron scattering. While, with a
grain of salt, the particle-hole continuum is universal for all cuprates the
response from fluctuating charge order in the range is so
far found only in LaSrCuO. We conclude that
LaSrCuO is close to static charge order and, for this reason,
may have a suppressed .Comment: 17 pages, 15 figure
An Investigation of Particle-Hole Asymmetry in the Cuprates via Electronic Raman Scattering
In this paper we examine the effects of electron-hole asymmetry as a
consequence of strong correlations on the electronic Raman scattering in the
normal state of copper oxide high temperature superconductors. Using
determinant quantum Monte Carlo simulations of the single-band Hubbard model,
we construct the electronic Raman response from single particle Green's
functions and explore the differences in the spectra for electron and hole
doping away from half filling. The theoretical results are compared to new and
existing Raman scattering experiments on hole-doped LaSrCuO
and electron-doped NdCeCuO. These findings suggest that the
Hubbard model with fixed interaction strength qualitatively captures the doping
and temperature dependence of the Raman spectra for both electron and hole
doped systems, indicating that the Hubbard parameter U does not need to be
doping dependent to capture the essence of this asymmetry.Comment: 13 pages, 10 figure
Matching Tree-Level Matrix Elements with Interleaved Showers
We present an implementation of the so-called CKKW-L merging scheme for
combining multi-jet tree-level matrix elements with parton showers. The
implementation uses the transverse-momentum-ordered shower with interleaved
multiple interactions as implemented in PYTHIA8. We validate our procedure
using e+e--annihilation into jets and vector boson production in hadronic
collisions, with special attention to details in the algorithm which are
formally sub-leading in character, but may have visible effects in some
observables. We find substantial merging scale dependencies induced by the
enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity
ordering is removed the merging scale dependence is almost negligible. We then
also find that the shower does a surprisingly good job of describing the
hardness of multi-jet events, as long as the hardest couple of jets are given
by the matrix elements. The effects of using interleaved multiple interactions
as compared to more simplistic ways of adding underlying-event effects in
vector boson production are shown to be negligible except in a few sensitive
observables. To illustrate the generality of our implementation, we also give
some example results from di-boson production and pure QCD jet production in
hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes
recommended by the refere
Back-to-back azimuthal correlations in Z+jet events at high transverse momentum in the TMD parton branching method at next-to-leading order
Azimuthal correlations in Z+jet production at large transverse momenta are
computed by matching Parton - Branching (PB) TMD parton distributions and
showers with NLO calculations via MCatNLO. The predictions are compared with
those for dijet production in the same kinematic range. The azimuthal
correlations between the Z boson and the leading jet are steeper
compared to those in dijet production at transverse momenta GeV
, while they become similar for very high transverse momenta
GeV. The different patterns of Z+jet and dijet azimuthal correlations can be
used to search for potential factorization - breaking effects in the
back-to-back region, which depend on the different color and spin structure of
the final states and their interferences with the initial states. In order to
investigate these effects experimentally, we propose to measure the ratio of
the distributions in for Z+jet - and multijet production at low
and at high transverse momenta, and compare the results to predictions obtained
assuming factorization. We examine the role of theoretical uncertainties by
performing variations of the factorization scale, renormalization scale and
matching scale. In particular, we present a comparative study of matching scale
uncertainties in the cases of PB -TMD and collinear parton showers
Uncertainty Relations in Deformation Quantization
Robertson and Hadamard-Robertson theorems on non-negative definite hermitian
forms are generalized to an arbitrary ordered field. These results are then
applied to the case of formal power series fields, and the
Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations
in deformation quantization are found. Some conditions under which the
uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte
Quantitative comparison of single- and two-particle properties in the cuprates
We explore the strong variations of the electronic properties of
copper-oxygen compounds across the doping phase diagram in a quantitative way.
To this end we calculate the electronic Raman response on the basis of results
from angle-resolved photoemission spectroscopy (ARPES). In the limits of our
approximations we find agreement on the overdoped side and pronounced
discrepancies at lower doping. In contrast to the successful approach for the
transport properties at low energies, the Raman and the ARPES data cannot be
reconciled by adding angle-dependent momentum scattering. We discuss possible
routes towards an explanation of the suppression of spectral weight close to
the points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure
Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report
This Report summarizes the proceedings of the 2015 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant
for high precision Standard Model calculations, (II) the new PDF4LHC parton
distributions, (III) issues in the theoretical description of the production of
Standard Model Higgs bosons and how to relate experimental measurements, (IV) a
host of phenomenological studies essential for comparing LHC data from Run I
with theoretical predictions and projections for future measurements in Run II,
and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les
Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227
page
- …