866 research outputs found
Retrogression
Suppose that you were suddenly to find yourself twenty-five miles from the nearest town in a cabin on Bay Talaunch in the Alabama forests. How would you manage in this modern day if you were that far from civilization? After having all of the conveniences of modern life as a part of one\u27s heritage, it is a real art to be able to live happily and comfortably in such an environment
Do mayors run for higher office? New evidence on progressive ambition
The mayor’s office potentially offers a launchpad for statewide and national political ambitions. We know relatively little, however, about how frequently mayors actually run for higher office, and which mayors choose to do so. This article combines longitudinal data on the career paths of the mayors of 200 big cities with new survey and interview data to investigate these questions. While we find that individual and city traits—especially gender—have some predictive power, the overwhelming story is that relatively few mayors—just under one-fifth—ever seek higher office. We suggest that ideological, institutional, and electoral factors all help to explain why so few mayors exhibit progressive ambition
Large-eddy simulation of subtropical cloud-topped boundary layers: 2. Cloud response to climate change
How subtropical marine boundary layer (MBL) clouds respond to warming is investigated using large‐eddy simulations (LES) of a wide range of warmer climates, with CO_2 concentrations elevated by factors 2–16. In LES coupled to a slab ocean with interactive sea surface temperatures (SST), the surface latent heat flux (LHF) is constrained by the surface energy balance and only strengthens modestly under warming. Consequently, the MBL in warmer climates is shallower than in corresponding fixed‐SST LES, in which LHF strengthens excessively and the MBL typically deepens. The inferred shortwave (SW) cloud feedback with a closed energy balance is weakly positive for cumulus clouds. It is more strongly positive for stratocumulus clouds, with a magnitude that increases with warming. Stratocumulus clouds generally break up above 6 K to 9 K warming, or above a four to eightfold increase in CO_2 concentrations. This occurs because the MBL mixing driven by cloud‐top longwave (LW) cooling weakens as the LW opacity of the free troposphere increases. The stratocumulus breakup triggers an abrupt and large SST increase and MBL deepening, which cannot occur in fixed‐SST experiments. SW cloud radiative effects generally weaken while the lower‐tropospheric stability increases under warming—the reverse of their empirical relation in the present climate. The MBL is deeper and stratocumulus persists into warmer climates if large‐scale subsidence decreases as the climate warms. The contrasts between experiments with interactive SST and fixed SST highlight the importance of a closed surface energy balance for obtaining realizable responses of MBL clouds to warming
Large-eddy simulation of subtropical cloud‐topped boundary layers: 1. A forcing framework with closed surface energy balance
Large‐eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large‐scale processes need to be prescribed or represented parameterically in the limited‐area LES domains. It is important that the representation of large‐scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change
Few big-city mayors see running for higher office as appealing
Former mayors are not unknown in Congress and in governors' mansions - but does running a big city act as a springboard for higher office? To answer this question, Katherine Levine Einstein, David M. Glick, Maxwell Palmer and Robert J. Pressel collected data from nearly 200 large US cities and interviewed 94 mayors. They find that mayors are not likely to seek higher office, and tend to have little interest in doing so – especially if they are women or black
An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up- and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up- and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle
Lunar navigation study, sections 1 through 7 Final report, Jun. 1964 - May 1965
Lunar navigation analysis using passive nongyro, inertial navigation, and radio frequency technolog
Lunar navigation study, summary volume Final report, Jun. 1964 - May 1965
Lunar surface navigation and guidance study to implement lunar surface vehicle exploration mission
Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds
Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model
Electrical activity and exocytotic correlates of biphasic insulin secretion from β-cells of canine islets of Langerhans
- …
