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Biphasic insulin secretion in response to glucose, consisting of 
a transient first phase followed by a progressive second phase, is 
well described in pancreatic islets. Using single canine β-cells we 
have compared the time courses of electrical activity and insulin 
granule exocytosis to biphasic insulin secretion. Short trains of 
action potentials, similar those found during first phase insulin 
secretion, trigger phasic exocytosis from a small pool of insulin 
granules, likely an immediately releasable pool docked near 
voltage activated Ca2+ channels. In contrast, plateau depolariza-
tions to between -35 and -20 mV resembling those during second 
phase insulin secretion, trigger tonic exocytosis from a larger pool 
of insulin granules, likely a highly Ca2+-sensitive pool farther 
from Ca2+ channels. Both phasic and tonic modes of exocytosis 
are enhanced by glucose, via its metabolism. Hence, in canine 
β-cells two distinct components of exocytosis, tuned to two 
components of electrical activity, may contribute significantly to 
biphasic insulin secretion.

Introduction

During a sustained rise in plasma glucose, pancreatic islets of 
Langerhans often display a biphasic time course of insulin release 
consisting of an initial, several minutes-long spike or first phase 
insulin secretion (FPIS), followed by a slowly developing but 
highly persistent dome or second phase insulin secretion (SPIS).1,2 
FPIS likely saturates insulin receptors on hepatocytes thereby 
blocking release of stored or newly formed glucose and stimulating 
importation of glucose newly absorbed from the intestinal tract. 
SPIS provides the sustained circulating concentrations of insulin 
needed to stimulate glucose uptake by peripheral adipocytes and 
by resting myocytes. In obese individuals, defects in biphasic secre-
tion, coupled with target cell insulin insensitivity, contribute to 
the over-stimulation of the β-cell with eventual loss of secretory 
capacity.3

Biphasic insulin secretion has long been attributed to the exis-
tence of two pools of insulin granules in β-cells, namely a limited 
readily releasable pool (or RRP), discharged after a rapid rise in 
glucose and a larger, and more easily replenished, reserve pool, more 
slowly recruited for release.4 There is now an emerging consensus 
that the pool responsible for FPIS, often called an immediately 
releasable pool (or IRP), requires local cytosolic [Ca2+] of tens 
of micromolar for discharge and is closely co-localized with (and 
docked at) voltage-dependent Ca2+ channels opened by early 
glucose-induced electrical activity.5-7 However, the identity and 
the method of recruitment of the pool responsible for SPIS remain 
uncertain. Is this granule pool activated by (i) a slow-to-develop 
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glucose-derived signal perhaps large working independent of 
closure of ATP-sensitive K+ (K+

ATP) channels8,9 or (ii) Ca2+ entry 
through a back-up voltage-dependent Ca2+ channel (CaV2.3), 
perhaps only activated during prolonged electrical activity?10 
Alternately, is the granule pool responsible for SPIS comprised 
of differently docked granules (e.g., lacking syntaxin) requiring 
a different spatio-temporal profile of activating [Ca2+]?11 Does 
this pool of granules correspond to the highly Ca2+ sensitive pool 
(HCSP), likely docked far from Ca2+ channels, sensitive to lower 
levels of local cytosolic [Ca2+],12 and proposed to account for 
exocytosis induced by prolonged depolarization in human and 
porcine β-cells.13,14

We have investigated depolarization-exocytosis coupling in 
patch-clamped single β-cells of dispersed canine islets of Langerhans 
using membrane capacitance (Cm) tracking15,16 and amperometric 
measurements of quantal release of serotonin.17,18 We now report 
that short trains of action potentials, (APs) similar to those seen 
during the brief FPIS,19 trigger phasic (fast-on, fast-off ) exocy-
tosis from a small pool of insulin granules, likely corresponding 
to an IRP. In contrast, plateau depolarizations (PDs) to -35 to 
-20 mV, similar to those seen during prolonged SFIS,19 trigger 
tonic (slow on-slow off and asynchronous) exocytosis from a larger 
pool of insulin granules, likely corresponding to the HCSP. Both 
phasic and tonic components of β-cell exocytosis are enhanced 
by glucose, whose metabolism appears to increase the sizes (and 
perhaps the refilling rates) of the underlying granule pools. On this 
basis we suggest that two components of exocytosis, tuned to the 
two components of electrical activity, may offer a relatively simple 
but novel model underlying biphasic insulin secretion in canine 
β-cells. Some of these results have previously been presented in 
abstract form.20,21

Results

Two phases of biphasic glucose-induced insulin secretion 
temporally correlate with two phases of biphasic glucose-induced 
electrical activity of β-cells of dispersed canine islets. Figure 1 
presents the starting observations for our study. In A, note that 
when perifused at 32°C in the presence of 10 μM forskolin (closed 
symbols), aliquots of dog islets gently dispersed to a preparation of 
mostly single cells, respond to an increase in bath [glucose] from 
3 to 12 mM with biphasic insulin secretion, although of slower 
kinetics, than those displayed by more intact canine islets perifused 
at 40°C in the presence of 10 μM forskolin (open symbols). The 
biphasic secretion consists of an initial FPIS, peaking 8–10 min 
after cells are first exposed to 12 mM glucose, followed by subse-
quent, slowly developing SPIS.

In B, note that under nearly identical ambient conditions 
(including similar constant perifusion), a single patch-clamped 
β-cell, representative of the majority (13/20) of cells recorded 
from, responds to an identical rise in bath [glucose] from 3 to 12 
mM with biphasic depolarizing electrical activity. The first phase of 
electrical activity, lasting ~10 min is comprised of clusters (bursts) 
of large amplitude, brief action potentials (APs) at rates from 1–15 
Hz, interrupted by brief intermittent plateau depolarizations. The 
second phase of electrical activity, persisting through the time 

course of development of SFIS, consists of a sustained plateau 
depolarization (PD), to between -35 and -20 mV. C, depicts the 
averaged time courses of spike activity and plateau depolariza-
tions displayed by 5 of the 13 majority type responder cells. Note 
that during the first phase of electrical activity both the average 
number of APs/burst (or spikes/burst; upper trace), and the average 
number of bursts/min (middle trace) initially rise and then fall, 
while the percent of time the cell spends at a plateau potential 
positive to -35 mV (lower trace) increases progressively until the 
voltage-dependent Na+ current inactivates and a sustained plateau 
depolarization develops.

Panels D and E demonstrate that FPIS and its temporally 
correlated interval of AP activity are both significantly depressed 
by tetrodotoxin (TTX), a blocker of voltage-dependent Na+ chan-
nels, while the SPIS and its temporally correlated extended PD are 
significantly enhanced by BAYK 8644, an opener of L-type Ca2+ 
channels. Following exposure to 400 nM TTX, the first phase of 
insulin secretion is reduced by 45–60% while the frequency of 
simultaneously occurring APs is reduced by 80%. Following expo-
sure to 10 μM BAYK 8644, the SPIS is increased nearly 4-fold 
while the amplitude of the simultaneously occurring PD is depo-
larized by 8–10 mV. In canine β-cells TTX inhibits whole-cell Na+ 
currents at a Ki of 3.2 nM,29 while BAYK 8644 negatively shifts 
the activation of whole-cell and single-channel Ca2+ currents (e.g. 
by 7 mV at 5–10 µM).19

Figure 1F shows aspects of the behavior of the minority of 
cells. The type I minority pattern, displayed by 3/19 cells, consists 
of an early transition from AP activity to a continuous PD then 
persisting throughout the remainder of the initial phase of insulin 
secretion. The type 2 minority pattern, displayed by 4/19 cells, 
consists of moderate frequency, lower amplitude AP activity 
persisting into the SPIS.

The strong temporal and pharmacological parallels between 
biphasic insulin secretion in dispersed, perifused islets and biphasic 
electrical activity in the majority of single β-cells suggests that the 
immediate stimulus for FPIS is intense Na+-dependent action 
potential activity, while the stimulus for SPIS is the onset and 
persistence of the PD.

To better appreciate the patterns of electrical activity that 
support exocytosis we planned to monitor simultaneous elec-
trical and amperometric activity of serotonin (5-HT) pre-loaded 
cells exposed to increased [glucose]. Unfortunately, 5-HT loaded 
β-cells depolarize poorly in response to glucose, much as they 
show blunted glucose-induced insulin secretion, a phenomenon 
reported for β-cells of other species.30 While 5-HT-loaded cells 
depolarize in response to the sulphonylurea tolbutamide (e.g., 
Appendix Fig. 1D), the latter is a poor substitute for glucose, 
evoking only monophasic insulin secretion.24,25 Therefore, we 
resorted to simulating the distinct phases of glucose-induced 
electrical activity and simultaneously monitoring the exocytosis in 
response to each phase.

Depolarization-induced exocytosis, tonic and phasic exocy-
tosis. Figure 2 presents the two patterns of exocytosis displayed by 
single canine β-cells in response to brief trains of depolarizations 
to membrane potentials that evoke significant Ca2+ currents. They 
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duration, fails to trigger a measurable increase in Cm, in spite of 
evoking peak Ca2+ currents (ICa) ~-150 pA. However, repeated 50 
and 100 ms depolarizations evoke slow but progressive increases 
(or “creeps”) in Cm (abbreviated as Cm, creep) during the interpulse 
interval and often continuing for 2–5 s after the depolarizing train 
ended. We call this delayed and sustained (i.e., “slow-to-start, 
slow-to-stop”) pattern of Cm increase tonic (or steady and asyn-
chronous) exocytosis.

In contrast, in B, representative 14/25 cells, brief 50 ms depo-
larizations, each evoking a peak ICa of -140 pA, were sufficient to 

suggest that there are two components of depolarization-induced 
exocytosis. In experiments of the type illustrated in panels A and 
B, increases in the membrane capacitance (Cm) of a β-cell were 
measured in response to trains of three depolarizing pulses, each 
of 25 or 50, 100 or 200 ms duration, applied at 1 Hz to +5 mV, 
where ICa is maximal (viz. Appendix Fig. 1B). Trains of depolariza-
tion were limited to three pulses separated by 3-minute intervals, 
to reduce the rapid granule depletion and contamination of traces 
by any slow component of endocytosis. In A, representative of 
11/25 cells, note that the first depolarization, up to 200 ms in 

Figure 1. Correlation of biphasic insulin secretion with biphasic electrical activity in β-cells of dispersed canine islets of Langerhans. (A) in the presence 
of 10 μM forskolin, increasing the perifusate [glucose] from 3 to 12 mM evokes biphasic insulin secretion from dispersed islets (◆) at 32°C, as well as 
from whole islets (○) at 40°C. In both conditions an initial spike-like FPIS is followed by the transition to a slowly increasing dome-like SPIS, though in 
dispersed islets perifused at the lower temperature both the time-to-peak of the spike and subsequent transition to dome phase are delayed by several 
minutes. (B) at 32°C in the presence of 10 μM forskolin, increasing the [glucose] from 3 to 12 mM evokes biphasic electrical activity from single patch-
clamped β-cells. With similar time course as FPIS, there is an initial phase of accelerating AP frequency accompanied by slower development of intermit-
tent plateau depolarizations; with similar time course as the transition to the dome phase of insulin secretion, a steady PD develops. (C) averaged time 
courses of development of AP activity and PD in five cells after increasing [glucose] of the perifusate from 3 to 12 mM. Note that during the first 10–12 
min in 12 mM glucose the intensity of AP activity, characterized by bursts of up to 5 APs/burst (upper trace) and up to 5 bursts/min (middle trace), 
initially increased and then decreased (lower trace), while the fraction of time the cells spent at the PD progressively increased until the APs inactivated 
and a sustained PD developed. After several minutes into the sustained PD, Vm sometimes displayed transient repolarizations which reduced its average 
value by several mV. (D and E) parallel effects of TTX and BAYK 8644 on insulin secretion (D) and electrical activity (E). TTX reduced FPIS and blocked 
the development of bursts AP; BAYK 8644 raised SPIS as well as average amplitude of the PD. (F) electrical activity of two minority type cells. Left, rapid 
transition from AP activity to PD based on closure of K+

ATP channels, the latter indicated by increasing membrane hyperpolarization to current injection 
pulses, Iinj, of -5 pA. Right, AP activity persisting for 25 min in 12 mM glucose.
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the steadily developing Cm, creeps in the inter-pulse intervals begin-
ning after the second depolarizing pulse and continuing through 
several subsequent 200 ms depolarizations. The close correlation 
of the time courses of Cm and the occurrence of QREs is further 
displayed in C,2, where the Cm trace overlays a scaled running sum 
of amperometric charge (ΣQamp = running integral of the ampero-
metric current). These data suggest that both assays are measuring 
exocytosis evoked from the same pool of granules. The subsequent 
‘trail off” of both assays of exocytosis with repetitive depolarization 
may reflect the onset of endocytosis at a time when the release-ready 
granule pool components are being depleted. In contrast, in D,1, 
where Cm, steps are clearly noticeable immediately after each of the 
first three depolarizations, note the bursts of amperometric current, 
representing overlapping QREs, during each depolarization, as well 
as the tails of other overlapping QREs persisting into the inter-pulse 
interval and coinciding with the Cm, creeps (see overlay of expanded 
traces of Cm and Iamp in D2). During the train of depolarizations, 

trigger a small but reliably detectable “step” in Cm (abbreviated 
as Cm, step), while long (200 ms) depolarizations, each evoking 
a larger QCas, triggered larger Cm, steps, followed by a prolonged 
Cm, creep. However, during a train of 200 ms depolarizations, 
with each successive depolarization the amplitude of the Cm, step 
declined even as the slope of the Cm, creep increased. We call this 
“rapid-to-start” pattern of Cm increase, which transforms into 
a “slow-to-stop” pattern, phasic (or synchronous and transient) 
exocytosis + tonic (or asynchronous and sustained) exocytosis.

C and D, present simultaneous capacitance and the ampero-
metric recordings of tonic and phasic + tonic patterns of exocytosis, 
respectively, in two β-cells preloaded with 5-HT and subjected to 
trains of ten 200 ms depolarizations to +10 mV. In each case note 
the similar time courses of exocytosis seen with both assays. In 
C,1, note the absences of both quantal release events (QREs) and 
capacitance increases (ΔCms) after the first depolarizing pulse, as 
compared with (ii) the increasing frequency of QREs paralleling 

Figure 2. Modes of exocytosis in canine β-cells monitored by increases in membrane capacitance (Cm) and the frequency of quantal release events 
(QREs). (A and B) contrast two patterns of exocytosis: tonic (or asynchronous and sustained) exocytosis vs. phasic + tonic (or synchronous and transient 
+ asynchronous and sustained) exocytosis. In (A), where no step-wise increase of Cm was seen in response to the first depolarizations, tonic exocytosis, 
manifested as post-stimulus continuous increase in Cm (denoted as Cm, creep), were first triggered by the second 200 ms depolarization, or the third 100 
ms depolarization, to +5 mV. Top inset shows sample current traces evoked by 50, 100 and 200 ms pulses. In (B), phasic exocytosis was seen as a 
Cm, step triggered by a single 50 ms depolarization, but its amplitude increased after more extended (100 and 200 ms) depolarizations. In this cell with 
phasic + tonic exocytosis, Cm, creeps were seen after the second and third 200 ms depolarizations. (C and D) exocytosis monitored simultaneously as Cm 
increases and increased frequencies of QREs. In the case of tonic exocytosis shown here (C), the first depolarization failed to evoke exocytosis while 
subsequent depolarizations in the train evoked a progressive Cm creep and an increasing frequency of QREs (see C,1). The overlay of scaled traces of 
Cm and Qamp (the running integral of Iamp) demonstrates the close temporal correspondence of two measures of exocytosis, including the exhaustion of 
exocytosis by the final depolarization of the train (C,2). With phasic + tonic exocytosis (D), the large steps in Cm, seen immediately after a depolarizing 
pulse, correspond well to the burst of QREs during the breaks in the Cm traces representing the stimulus interval. (D,2) expanded from (D,1).
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the basis for FPIS, then single APs or short burst of APs occurring 
at a frequency of 1–4 Hz should support single cell phasic exocy-
tosis. In Figure 3 we demonstrate that single or short trains of APs, 
evoked by brief depolarizing current pulses, trigger QREs, while 
voltage waveforms simulating APs trigger small Cm steps.

both the tonic and phasic components of exocytosis undergo signifi-
cant depletion, though depletion of the phasic component appears 
to be faster. We shall return to this point later.

Phasic component of exocytosis occurs during brief bursts of 
action potentials. Assuming that early electrical activity constitutes 

Figure 3. Examination of phasic exocytosis in response to action potential activity evoked by current injection (A, C and E) and action potential simulation 
under voltage-clamping (B, D and F). (A) demonstrates that in selected cells stimulated at 0.2 Hz, brief depolarizing current pulses (10 pA), producing 
rapid upstroke action potentials with overshoots to +10 mV, provoked an occasional QRE within 25 ms. (B) demonstrates that in selected cells, here 
stimulated at 0.2 Hz, single simulated APs of similar morphology as in A (and producing a rapid INa followed by a slower developing ICa), provoke 
Cm, steps seen immediately after the termination of the complex depolarizing pulse. (C) demonstrates, in cells poorly responsive to stimulation at 0.2 Hz, 
that increasing the frequency of depolarization-evoked APs from 1 Hz (C,1) to 4 Hz (C,2) increases quantal release efficiency by several-fold. Similarly 
(D) demonstrates that increasing the frequency of voltage-clamp simulated APs from 1 Hz (D,1) to 4 Hz (D,2) enhances the total Cm increase by nearly 
3-fold. In (D,1) note discrete measureable Cm, steps (marked by *s) after depolarizing pulses numbers 2, 4, 5, 6, 8 and 9. (E and F) present comparisons 
of cumulative exocytosis in response to trains at 4 Hz vs. 1 Hz, using each of the two experimental paradigms shown in (C and D).
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able exocytosis detectable, depolarizations to -30, -20 and -10 mV, 
which evoked progressively larger Ca2+ entries (4.2, 8.7 and 25.4 
pC; respectively), were increasingly effective in triggering quantal 
release, beginning after briefer delays during the prolonged depo-
larization, and continuing for up to several seconds after cessation 
of the depolarization. Of physiological importance is the steep 
increase in depolarization-induced exocytosis over the range of -35 
to -20 mV range, the pertinent voltage range for glucose-induced 
plateau depolarizations.

The features of long latencies to onset of depolarization-
induced exocytosis and ongoing exocytosis after cessation of Ca2+ 
entry displayed by the cell in panel A suggests that a threshold of 
Ca2+ entry and cytosolic Ca2+ accumulation must be exceeded 
prior to the onset of secretion and that secretion continues until 
cytosolic Ca2+ falls below that threshold. We investigated some of 
these features in more quantitatively in three cells, in which Ca2+ 
currents showed very slow inactivation and individual ampero-
metric events showed little overlap. These cells were depolarized, 
in random order to -35, -30, -20, -10 mV. In panel B, for each 
cell the running sum of the number of amperometric spike events 
(ΣASE) was plotted against total Ca2+ entry (ΣQCa) at each depo-
larizing voltage. Each cell had an apparent “threshold” value of 
QCa, ranging from 4–5 pC to 10–12 pC.

We hypothesized that the tonic exocytosis displayed in response 
to repetitive or prolonged depolarization resulted from slow 
build-up of the global [Ca2+]i, to levels that triggered exocytosis, 
followed, after Ca2+ entry ceased, by the subsequent decline 
in [Ca2+]i, and disappearance of the exocytotic response. The 
threshold dependence on Ca2+ entry would then represent the 
interaction of voltage-dependent Ca2+ entry and the properties 
of cytosolic and organelle-based Ca2+ buffers, to convert plasma 
membrane Ca2+ entry into uniform elevation of free [Ca2+]i 
available to trigger release. To test this hypothesis we used patch-
clamped β-cells that appeared uniformly fluorescent after loading 
with Fura-2 to examine, during a train of repetitive depolarizations, 
the relationship of the development of Cm, creep to the monitored 
rise in [Ca2+]i. Cells chosen for analysis displayed little to no 
Cm, step after a single 200 ms depolarizing pulse to +5 or +10 mV 
and little decline in Cm over the 5–10 s following the train. 
Depolarizing pulses of 200 ms duration were applied in attempt to 
obtain uniform elevation of Ca2+ concentration during each pulse 
as is possible with adrenal chromaffin cells.31

Using the Fura-2 fluorescence ratio (F340/F380) as an indi-
cator of free cytosolic [Ca2+], [Ca2+]i, Figure 4C demonstrates 
the parallel rises in rate of Cm, creep and [Ca2+]i, from the third 
depolarization through to 1–2 s after the last 5th depolarization. 
Thereafter, the rate of Cm, creep declines in tandem with a drop in 
Fura-2 fluorescence ratio. To quantify this, the Cm trace from the 
end of the 3rd depolarization through following 15 s was fit to a 
high order polynomial in an attempt to both smooth the data and 
interpolate between the gaps created during depolarizations. This 
polynomial was differentiated to produce the trace labeled dCm/
dt, which was taken to represent Cm, creep. D, shows a set of these 
derived traces, plotted against calibrated [Ca2+]i, for three separate 
experiments. The dCm/dt increased as a supralinear function of 
[Ca2+]i over the [Ca2+]i range of 500 to 1,000 nM. Importantly, 

In A, depicting data from a particularly robustly secreting cell 
stimulated at 0.2 Hz, note that a single AP evoked by a brief 18 
ms injection of current (10 pA) results in a QRE after a latency 
of 25–50 ms. In B, obtained from a similar robustly secreting cell 
stimulated at 0.2 Hz, a simulated AP, of waveform similar to the 
AP recorded in A, and evoking a rapidly inactivating INa followed 
by slowly deactivating ICa ( Appendix Fig. 1C for details), results 
in a small step in Cm ~ 3.5 fF. (For the 50 responses recorded in 
response to 120 trials step size ranged from 2–4 fF, or roughly 
equivalent to the 2–2.5 fF step size expected from the exocytosis of 
a 250–300 nm diameter secretory granule, given the intrinsic noise 
even of filtered records and the resolution limits of the recording 
system). The probability of recording a QRE in response to an 
isolated evoked AP on average was significantly lower at ~10–15%, 
probably due to the limited area of cell surface available to the 
amperometric electrode. All QREs had a latency (time from peak 
of AP to peak of QRE) of <100 ms.

In contrast, in other cells, brief trains of 10–20 APs, evoked 
at frequencies between 1 an 4 Hz, were quite effective at eliciting 
QREs and measurable changes in Cm, even though isolated APs 
evoked at 0.2 Hz were not. Strikingly, in response to APs applied 
at a frequency of 4 Hz, the number of QREs recorded during 
the train was on average of 3.6-fold larger than at 1 Hz (compare 
traces in C,2 with C,1). In addition, the latency of the QREs was 
wider at 4 than at 1 Hz, with only 70% of events occurring within 
100 ms at 4 Hz vs. 85% at 1 Hz; this likely reflects the develop-
ment of tonic or asynchronous release with prolonged stimulation. 
Similarly, in response to simulated APs applied at 4 Hz, the total 
ΔCm by the train was augmented by 2.6-fold over that seen in 
response to simulated APs at 1 Hz (compare traces in D,2 with 
D,1). Consistently, the first AP of the train was not effective in 
evoking release while later APs became increasingly effective in 
doing so. Summary data for this effect are shown in panels E and 
F. The “tuning” of exocytosis to bursts of several APs, as opposed 
to single isolated APs, suggests that a causal link might underlay 
the temporal correlation of increasing release during FPIS with 
the ongoing increase AP activity (APs/burst and bursts/min). The 
increasing efficiency of exocytosis during the much of the course of 
an AP train suggests facilitation of release due to Ca2+-dependent 
priming of the exocytotic process.

Tonic component of exocytosis operates over the range of 
plateau phase depolarizations and is sustained by a rise in global 
[Ca2+]i to >500 nM. If a prolonged plateau depolarization in the 
range of -30 to -20 mV constituted the basis for plateau phase 
secretion, then voltage-clamp depolarizations into this range should 
sustained exocytosis. Figure 4 investigates the voltage-dependence 
and the timing of quantal release during and after brief trains or 
continuous depolarizations in an attempt to relate tonic exocytosis 
to prolonged Ca2+ entry and the resultant rise in global [Ca2+]i. 
A, compares the exocytotic efficiencies of 5 s long depolarizations 
to different Vc values in a cell that we had previously shown to 
require at least 200 ms of continuous depolarization to initiate 
exocytosis. Each depolarization was followed by a rest period of 
90–120 s at -70 mV to insure recovery from depletion of the store 
of readily releasable exocytotic granules. While a depolarization to 
-35 mV, evoking a total Ca2+ entry of 1.6 pC, produced no detect-
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whether glucose and glucose metabolism might be such a factor.
Figure 5 demonstrates that raising extracellular glucose concen-

tration, into the range that produced biphasic insulin secretion, 
enhanced both phasic exocytosis, proposed to predominate during 
the time course of FPIS, as well as tonic exocytosis, proposed to 
begin during first phase secretion and grow to be predominant 
during SPIS. In a sample cell (Fig. 5A), in the presence of 4 mM 
glucose, five 50 ms depolarizations to 0 mV applied at 1 Hz 
produced steps of Cm exclusively. However, after 10 min exposure 
to 12 mM glucose, the first two depolarizations produced larger 
Cm steps while the subsequent depolarizations evoked Cm creeps. 
After 25 min in 12 mM glucose there appeared to be no further 
enhancement of Cm, steps while Cm, creeps were enhanced and were 
in evidence after earlier depolarizations. All of this occurred in the 
face of a modest (12%) decrease in Ca2+ entry, suggesting profound 
augmentation of the processes underlying both phasic and tonic 
exocytosis, perhaps through an increase in the pool of readily 

this is the minimum range of [Ca2+]i needed to induce the slow 
rates of continuous exocytosis in β-cells seen either in cells dialyzed 
via whole-cell patching with pipettes containing buffered Ca2+ 
solutions32 or permeabilized to extracellular Ca2+ by the channel-
forming neurotoxin α-latrotoxin.33 In addition, it is the minimum 
range of [Ca2+]i that induces slow rates of insulin secretion from 
perifused β-cells previously permeabilized with digitonin.34

Phasic and tonic components of exocytosis are enhanced, over 
minutes, by concentrations of extracellular glucose that trigger 
biphasic insulin secretion. In correlating electrical activity with 
insulin secretion it appeared that AP activity peaked earlier than 
the peak of FPIS, while average plateau depolarization sagged by 
2–3 mV, likely due to some long term Ca2+ channel inactivation, 
even as SPIS was increasing. This suggested that in the presence of 
secretogogue levels of glucose, over minutes, some factor(s) might 
be contributing to a progressive increase in the efficiency of depo-
larization-exocytosis coupling. In an initial approach we tested 

Figure 4. Prolonged depolarizations to values of Vm resembling glucose-instigated PDs evoke Ca2+ entry-dependent exocytosis. (A) combined measure-
ment of Iamp and Cm, during and again after 5 s depolarizations to Vc = -35, -30, -20 and -10 mV. Note that with depolarizations to more positive Vc 
values, where total depolarization-evoked Ca2+ charge entry (QCa = integral of ICa) increases, both the number of QREs and post-pulse ΔCm increase, 
while the latency to the occurrence of the initial several QREs shortens. (B) relationship of exocytosis, measured by the running sum of QRE, to QCa in 
the three most stable cells, where at least two depolarizations, either to -35, -30, -20 or -10 mV, were applied in random order at 90 s intervals. (See 
text for more details). (C) simultaneous recording of Cm (upper trace) and Ca2+ fluorescence ratio (F340/F380) in a Fura-2 pre-loaded cell. A train of five 
200 ms depolarizations to 0 mV was applied at 1 Hz. (D) correlation of the rate of Cm, creep (dCm/dt ) with calibrated cytosolic calcium concentration, 
[Ca2+]i, from experiments similar to that shown on C (see text for details).
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at 4 Hz every 2 min to cells maintained under three distinct condi-
tions. While in 4 mM glucose ΣΔCm remained constant over 10 
min, in 12 mM glucose ΣΔCm progressively increased up to 2.5 
fold. In contrast, in the presence of 12 mM glucose + 20 mM 
mannoheptulose, an inhibitor of the cytoplasmic phosphorylation 
of transported glucose, ΣΔCm was again stable over the 10 min. To 
investigate the effects of glucose and glucose metabolism on tonic 

releasable granules.
We further examined the effect of glucose exposure on depo-

larization-exocytosis coupling in the face of stimuli more closely 
simulating glucose-induced electrical activity. To investigate the 
effects of glucose and glucose metabolism on phasic exocytosis, in 
B we measured Cm increase (ΣΔCm), consisting almost exclusively 
of steps of Cm, in response to a train of ten simulated APs applied 

Figure 5. Progressive enhancement of phasic and tonic exocytosis during prolonged exposure to concentrations of glucose that promote insulin secretion. 
(A) overview of the effects of glucose on both modes of exocytosis from single canine β-cells. Left, control cell displaying very clear phasic exocytosis in 
response to a train of five 50 ms pulses to 0 mV applied at 1 Hz in 4 mM glucose. Middle, same cell after 10 min exposure of cell to 12 mM glucose; 
note the enhancement of Cm, steps, in response to the first two depolarizations, and modest development of Cm, creep, in response to depolarizations 3 to 
5. Right, same cell after 25 min exposure to 12 mM glucose; note the stable enhancement of Cm, steps, in response to the first two depolarizations, and 
further development of Cm, creep. (B) effects of glucose and glucose metabolism on the time course of phasic exocytosis evoked by a train of 10 standard 
AP-shaped pulses (identical to those used in Fig. 3B) applied at 4 Hz once every 2 min. Note that the progressive increase in train-evoked Cm, steps 
over 10 min in 12 mM glucose vs. the stable pattern of Cm, steps in 4 mM glucose. Also the effect of elevated glucose is abolished by addition of man-
noheptulose, an inhibitor of phosphorylation of glucose after its entry into the cytosol. (C) effects of glucose on the time course of development of tonic 
exocytosis, measured as summed Cm, creep in response to a train of five 200 ms pulses to 0 mV, delivered at 1 Hz, at five min intervals. Note the slow 
increase in summed Cm, creep beginning by 10 min of exposure to 12 mM glucose, as compared with the stable response pattern in 4 mM glucose.
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the basis for SPIS. Both phasic and tonic components of exocytosis 
are enhanced at concentrations of ambient glucose that provoke 
insulin secretion. In the presence of 12 mM glucose, the potency 
of the phasic component of exocytosis is increased 2–3 fold over 
the time course of first phase insulin secretion; this likely amelio-
rates any depression of release that might result from moderately 
declining intensity of AP activity after an early peak. Similarly, the 
potency of the tonic component of exocytosis is similarly increased 
throughout the early segment of dome phase of insulin secretion, 
even as the sustained PD sags by several mV. Hence, provided that 
our assays of exocytosis adequately reflect insulin secretion, the 
combination of the two components of exocytosis, tuned to release 
by distinct modes of electrical activity, plus the effects of glucose on 
each, may be sufficient to account for a large portion of biphasic 
insulin secretion in isolated canine β-cells.

Mechanistically, by analogy to previous work done on mouse 
β-cells and INS-1 clonal insulinoma cells, it is likely that granule 
pools underlying the phasic vs tonic components of exocytosis 
differ in their Ca2+ sensitivities for fusion, and their localization 
with respect to plasma membrane Ca2+ channels.12 We propose 
that phasic exocytosis evoked by single or short trains of single 
APs occurs from an immediately releasable pool (or IRP) closely 
co-localized with high voltage-activated (HVA) and likely L-type 
Ca2+ channels; granules in this pool experience micro-domains of 
cytosolic [Ca2+] in the tens of μM and display low Ca2+ sensitivity 
(>5 μM). In addition, we propose that tonic exocytosis evoked 
by prolonged plateau results from a highly Ca2+ sensitive pool 
(HCSP) poorly co-localized with Ca2+ channels; granules in this 
pool experience much smaller, more global rises in cytosolic [Ca2+] 
(at best several μM after buffered diffusion of Ca2+ from its entry 
sites), and display a much higher Ca2+ sensitivity. The HCSP, often 
small, is increased several to many-fold, by enhancing protein 
kinase A (PKA) and protein kinase C (PKC) activity as well as by 
increasing ambient [glucose];12 it should particularly prominent 
under our experimental conditions of continuous application of 
forskolin and elevated bath [glucose]. Though traditionally tonic 
exocytosis has received scarce attention (reviewed in ref. 14), recent 
recordings from porcine β-cells suggest that it should contribute 
to exocytosis during intermittent PD lasting several seconds.14 We 
have speculated that the differential Ca2+ sensitivity and spatial 
docking of granules of the IRP and HCSP may result from distinct 
isoforms of synaptotagmin.14

In emphasizing the presumed existence of two spatially distinct 
pools of granules, with widely different Ca2+ sensitivities, we 
assume elements of both of these pools exist under basal condi-
tions. However, given the rapid rundown of both modes of 
exocytosis during intense electrical activity, it is likely that recruit-
ment of granules is necessary to replenish and maintain both pools 
of granules during and after intense secretion. In a limited set of 
experiments (Appendix Fig. 3) we obtained data suggesting that 
the granule pools underlying both phasic and tonic exocytosis 
recovered from depletion over ~2 min, apparently along exponen-
tial time courses that were enhanced by elevated glucose. Also, our 
hypothesis does not preclude possible contributions that Ca2+-
dependent mobilization of granules or non-uniformity of Ca2+ 

exocytosis, in C we measured the effect of 4 vs. 12 mM glucose 
on the time course of development of Cm, creep during a train of 
five 200 ms depolarizations to 0 mV applied at 1 Hz. When test 
trains were applied every 5 min to 3 cells exposed to 4 vs 12 mM 
glucose, note that in 4 mM glucose the total Cm, creep per train (or 
ΣΔCm, creep) remained constant over 10–15 min but then tended 
to decline. However in 12 mM glucose ΣΔCm, creep increased 
progressively increased by up to 3 fold over 20 min, this in spite 
of an average a progressive decrease peak in ICa and QCa of up to 
15% by 20 min, which would otherwise depress exocytosis by at 
least 30%.

Discussion

Biphasic insulin secretion in response to a sustained rise in 
glucose to above 10 mM is common to islets of many mammalian 
species. Several hypotheses have been proposed to account for it. 
In this paper we explore its exocytotic correlates in single canine 
β-cells and suggest that tuning two modes of exocytosis (phasic 
and tonic) to two modes of glucose-induced electrical activity 
(action potential trains and plateau depolarizations, respectively) is 
a major contributor to biphasic insulin secretion in the dog.

Under nearly identical conditions of stable ambient temperature 
of 32°C and forskolin, individual canine β-cells display biphasic 
glucose-induced insulin secretion that temporally and pharmaco-
logically closely parallels biphasic electrical activity. FPIS, which is 
suppressed TTX, is concurrent with increasing intensity of bursts 
of Na+

o-dependent APs, reaching a peak intensity of nearly 5 APs/
burst and 4 bursts/min. The transition to SPIS is concurrent with 
the waning of AP activity and the development of a prolonged 
PD between -30 and -25 mV, with both SPIS and PD enhanced 
by BAY K 8644. Furthermore, under identical conditions we have 
also monitored single cell exocytosis using two real-time assays. 
Consistently, we find that the two patterns of electrical activity 
clearly evoke two components of exocytosis from canine β-cells. 
Evoked or simulated APs, clustered at 1 to 4 per second, largely 
evoke a phasic component of exocytosis, consisting of single QREs 
and small steps Cm, well-synchronized with (i.e., during, or within 
50 ms of termination of ) the evoked or simulated AP. In contrast, 
PDs evoke a tonic component of exocytosis, consisting of barrages 
of QREs or continuous increases in Cm beginning up to hundreds 
of ms after the start of a depolarization and continuing for up to 
several seconds after its conclusion. The near synchrony of occur-
rence of QREs and Cm increases (within the 25–50 ms limit of 
resolution of the post-stimulus measurement of Cm) suggests that 
both assays reflect the same basic exocytotic process.

Quantitatively, the vast majority of canine β-cells respond 
within 2–4 minutes of a rise in [glucose] from 3 to 12 mM by firing 
short trains of large amplitude APs; more than half of these cells 
undergo exocytosis in response to single or short trains of AP-like 
depolarizations. On this basis we suggest that moderate frequency 
AP activity, leading to a “phasic” component of exocytosis, may be 
the basis for FPIS. In addition, the vast majority of canine β-cells 
respond within 12 min with PDs to -30 to -25 mV and begin to 
exocytose within <500 ms after onset of such PDs. On this basis we 
suggest that PDs resulting in tonic component exocytosis may be 
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limited by measurement instability over the many minutes needed 
to measure biphasic insulin secretion. Two promising fluorescence 
imaging approaches to bridge the capacitance/amperometry and 
radioimmunoassay approaches involve the real-time monitoring 
of release of material known to be in the dense core of the insulin 
granule, such as GFP-tagged insulin (and/or C-peptide fragment) 
or Zn2+,38-40 the latter reacting extracellularly with a fluorescent 
divalent cation chelator. The varying estimates of the efficiency of 
release of large granule contents, though not critical to our quali-
tative arguments, might be much more significant for any future 
quantitative reconciliation of results from the various approaches.

Finally, it is worthwhile attempting to reconcile our data and 
model with those of others. It is possible and even likely that the 
important physiological feature of biphasic insulin secretion may 
be based on several cellular mechanisms, which take on variable 
prominence in different species, as well as in a single species at 
different stages of development, under different conditions of 
innervation and aggregation and under varying exposure to para-
crine (glucagon and somatostatin) and incretin (e.g., glucagon-like 
intestinal peptide-1 and acetylcholine) agents. Admittedly, in 
vitro canine β-cells display several features quite distinct from the 
standard mouse model, including Na+

o-dependent APs, PDs, and 
the striking dependence of insulin secretion on the enhancement 
cytosolic [cAMP]. However, the former two features are shared 
with β-cells of other large, long-lived mammals including human 
and pig while minute-long PDs are seen in rat β-cells exposed to 
[glucose] > 10mM.41a Also incretins, which enhance insulin secre-
tion by raising cytosolic [cAMP], are now recognized to support 
biphasic insulin secretion in situ from normal as well as β-cell-mass 
compromised islets in many species.41 Furthermore, our data easily 
encompass previous ideas of two spatially distinct pools of gran-
ules, recently directly visualized,11 contributing to biphasic insulin 
secretion, as well as the importance of recruitment of new and 
perhaps newly synthesized granules into the readily releasable pools 
directly maintaining SPIS.4,42 Also there is no intrinsic contra-
diction between our data and that suggesting that SPIS can be 
mimicked in a K+

ATP channel-independent manner by raising [K+]

o in the presence of a large concentration of diazoxide,8 a condition 
that opens the latter channels and largely obliterates oscillations in 
[Ca2+]i. In canine β-cells examined in current clamp mode under 
perforated patch conditions, after metabolic inhibition by sodium 
azide (NaN3, 1.3 mM) or treatment with diazoxide (DZ, at >150 
μM), two conditions where K+

ATP channels are massively open 
even in the presence of secretagogue concentrations of glucose, the 
membrane potential behaves as a K+ selective electrode over a wide 
range of [K+]o.

35 In pilot experiments, in the face of 30 mM K+ 
PSS, used to provoke K+

ATP channel-independent rises in [Ca2+]

i and insulin secretion referred to above, canine β-cells exposed 
to 10 mM glucose and 250 μM diazoxide readily achieve PDs of 
~-20 mV.35 In principle, this should evoke exocytotic release of 
magnitude similar to those evoked by PDs generated by passage 
of depolarizing current or voltage clamp depolarization, provided 
DZ does not inhibit exocytosis as a side effect, an issue we have 
not specifically tested in whole canine islets or single β-cells. 
Furthermore, in principle, exocytosis evoked in this manner should 

buffering might alter the latency of exocytosis after depolarization. 
Two possible contributory features merit consideration. First, 
during trains of APs or brief (25–50 ms) depolarizations applied 
at 1–4 Hz, often the probability of release is consistently higher 
in response to the second pulse than to the first pulse and further 
increases with subsequent depolarizations in the train (Fig. 3). 
Second, small amplitude depolarizations (say to -35 mV), which 
in themselves do not evoke exocytosis, nonetheless decrease the 
latency to first appearance of tonic QREs seen during an imme-
diately subsequent depolarization (applied within 3 s) to voltages 
that support exocytosis (Misler S, Zhou Z and Dickey AS, unpub-
lished data).

Two caveats about our experimental design worth further 
comment. First, while both our whole cell ICa and single channel 
data,35 including evidence for lack of pre-pulse potentiation 
(Appendix Fig. 1A), support the notion that the ICa underlying 
exocytosis is an HVA Ca2+ current, likely of L-type, we have not 
performed detailed pharmacological dissection of Ca2+ currents. 
As both single-channel and whole-cell Ca2+ currents were difficult 
to suppress with a L-type Ca2+ channel antagonist, nifedipine and 
whole-cell Ca2+ current had two component of voltage-dependent 
inactivation,19 we cannot rule out contributions made by P/Q or 
R-type Ca2+ currents, recently suggested to provide the bulk of the 
Ca2+ entry that is coupled to exocytosis in human β-cells.36

Second, while we have not used flash photolysis of caged Ca2+ 
to define the size of the IRP and HCSP, we have attempted indi-
rect estimates of their sizes. We have tentatively estimated the 
maximum size of the IRP (or Bmax), from the “run-down” of the 
Cm steps seen in response to the first two 100 or 200 ms depo-
larizations (ΔCm,1 and ΔCm,2, respectively) during a short train 
depolarizations applied at 1 Hz (i.e., Bmax = (ΔCm,2 + ΔCm,1)/(1 
- ΔCm,2/ΔCm,1).37 In four experiments where (i) ΔCm,1 and ΔCm,2 
displayed little or no creep component and (ii) sequentially evoked 
ICas ran down by less than 5%, we estimated Bmax to average 148 
fF. Assuming an increase in Cm of 2 to 2.5 fF for the fusion of each 
dense core insulin-containing granule with the plasma membrane, 
this translates to ~60–80 insulin granules, or comparable to the 
size of the IRP in mouse β-cells as measured by flash photolysis 
of caged Ca2+.5-7 We roughly estimate the size of HCSP, from the 
total Cm, creep recorded before exhaustion of ΔCm and QREs during 
a short train and tentatively suggest that in our experimental condi-
tions the size of the HCSP is at least three times that of the IRP.

In comparing the insulin secretion by radioimmunoassay with 
exocytosis single cell electrophysiology it is critical to note that 
the electrophysiological assays only require fusion pore formation 
and/or the diffusion of a highly mobile small molecule into the 
extracellular space. Hence they might overestimate the success of 
exocytotic events requiring full granule fusion and dispersion of 
the compact insulin crystal. In addition, even under conditions 
where both small and large molecules are successfully released, 
the kinetics of release of the large molecule might be significantly 
slower and its appearance in the bath delayed by up to several 
seconds. In principle, insulin sensing by amperometry would 
be an ideal technique for bridging the electrophysiological and 
immunological assays; however in practice, this technique is 
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incorporates both the well-studied relationship of AP activity to 
exocytosis from IRP, likely prominent in FPIS of many species, and 
a novel relationship of PD to exocytosis from an HCSP, which we 
propose to be of varying prominence in SPIS by some species. The 
scaling of these features by glucose-induced and time-dependent 
changes in the sizes of IRP and HCSP may counteract subtle 
time-dependent changes in distinct patterns of electrical activity, 
such as decreases in AP frequency or sags in PD amplitude, and 
hence maintain and even enhance the distinct secretory phases (see 
summary Fig. 6). This new model is complementary to others of 
biphasic secretion. While de-emphasizing the potential importance 
of involvement of distinct Ca2+ channels in the two phases of secre-
tion proposed by some,10 it emphasizes the importance of docking 
of different pools of insulin granules, here proposed to be of 
distinctly different Ca2+ sensitivity and located at varying distance 
from Ca2+ entry channels, emphasized by others.11

Methods

Overall, the techniques used for single-cell electrophysiological, 
amperometric and fluorescence monitoring of single canine β-cells 
were virtually identical to those previously described in our recent 
studies of human and porcine β-cells.14,22,23 The techniques used 
for preparation24 and dispersion of islets, as well as for their peri-
fusion in a filter chamber at 1 ml/min and radioimmunoassay of 
insulin release, were closely similar to those used in our previous 
studies of canine islets.24,25

The following specifics are worth noting. (i) Unless otherwise 
stated experiments were performed at 32°C and in the presence of 
4 mM glucose and 10 μM forskolin in the bath to insure exocytosis 
under stable electrophysiological recording conditions and facili-
tate direct comparison of single cell electrical activity, exocytosis 
and insulin secretion under nearly identical conditions. As shown 
in our prior studies,24,25 canine β-cells require enhancement of 
cytosolic [cAMP], via application of a membrane permeant cAMP 
derivative, a phosphodiesterase inhibitor, an activator of adenylyl 
cyclase, or glucagon, in order to respond to a rise in ambient 
[glucose] with biphasic insulin secretion or to Ca2+ entry induced 
by depolarization with measurable exocytosis (increase in Cm). 
10 μM forskolin is near the minimum concentration needed to 
guarantee glucose-induced biphasic insulin secretion from canine 
islets at physiological temperature, while 5 μM forskolin was the 
minimum concentration needed to guarantee glucose-induced 

be enhanced by glucose metabolism either by increasing [ATP]

i and/or decreasing [ADP]i or by producing another intracellular 
metabolic intermediate. However, the ability to mimic a phase of 
exocytosis under non-physiological conditions does not necessarily 
reveal physiological mechanisms.

Hence, the results we present here suggest that canine β-cells 
provide a relatively simple model for biphasic insulin secretion, 
features of which may be applicable to porcine, and perhaps other, 
β-cells, which display intermittent periods of PD with few super-
imposed APs during prolonged glucose exposure.14 The model 

Figure 6. Summary hypothesis for coupling of spike train and plateau 
phases of electrical activity to insulin granule exocytosis from IRP and 
HCSP. Top trace shows tracing of early glucose-induced spike trains and 
later prolonged plateau depolarization seen on raising ambient [glucose] 
from 4 to 12 mm (reproduced from Fig. 1B). Second trace shows a 
schematic of how Ca2+ entry during the two phases of electrical activity 
contributes to exocytosis from granules of a low Ca2+ affinity pool (IRP) 
located very near voltage-dependent Ca2+ channels vs. from granules of a 
high Ca2+ affinity pool (HCSP) located at some distance from the voltage-
dependent Ca2+ channels. Middle graphs show time courses of AP and 
plateau activities, including scaling of their efficiencies by elevated ambi-
ent [glucose] of 12 mM, as well as estimated changes in IRP and HCSP 
sizes achieved in raising [glucose] from 4 to 10–12 mM. Bottom trace 
depicts graph of time course of insulin secretion seen on raising ambient 
[glucose] from 4 to 12 mM (reproduced from Fig. 1A).
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seconds-long depolarization were sought, the capacitance tracking 
feature of the EPC-9 software (Captrack) was used at a sampling 
frequency of 2 Hz (e.g. Fig. 4A).

(iv) Amperometry was performed on patch-clamped β-cells, 
previously loaded with serotonin (5-HT) and 5- hydroxytryptophan, 
each at incubation concentrations of 0.5 mM, using polypropylene 
insulated or electro-deposition paint-coated carbon fiber elec-
trodes (ALA Scientific Instruments) that touched the surface of 
individual β-cells. The electrode was held at +650 mV using an 
EPC-7 amplifier (Heka, Germany). Amperometric data, filtered at 
300 Hz using an 8 pole Bessel filter (Frequency Devices Haverhill, 
MA), were acquired simultaneously with electrophysiological data 
using the software package that runs the digital LID. Quantal 
release events (QREs) were tabulated with an interactive Igor-
based program. A detailed characterization of QREs is presented 
Appendix Figure 2.

Note

Supplementary materials can be found at:
www.landesbioscience.com/supplement/
MislerCHAN3-3-Sup.pdf
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depolarization and electrical activity in all single canine β-cells, 
nearly 40% of which did not respond to glucose but did respond 
to tolbutamide (30 μM) in the absence of forskolin.24 In paired 
experiments performed at 24 or 28°C, increasing [forskolin] 
from 5 to 10 μM increased the rate of membrane depolarization 
by 2.3 +/- 0.4 fold (n = 6) (accompanied by faster decreases in 
background membrane conductance) and sped the time to start of 
plateau depolarization by 2.5 +/- 0.3 minutes (n = 5), but did not 
alter the basic pattern of biphasic electrical activity.25

(ii) Single-cell electrical recordings were made in the perforated-
patch variant of the whole-cell recording configuration on cells, 
with baseline Cm > 6 pF (to maximize probability of recording from 
a β-cell26) bathed either in a physiological saline solution (PSS) 
(containing, in mM: 138 NaCl; 5.5 KCl; 2 CaCl2; 1 MgCl2; 3.0 
glucose; 10-2 forskolin; and 20 HEPES buffer titrated with NaOH 
to pH 7.38), or in a partially tetraethylammonium-chloride-substi-
tuted saline solution (pTEAs-PSS), in which 40 mM NaCl was 
substituted mole-for-mole with TEA-Cl. Current-clamp recordings 
were made on cells bathed in PSS with the patch pipette filled with 
a high K+ intracellular solution (K+-IS), containing (in mM): 63.7 
KCl; 28.35 K2SO4; 47.2 sucrose; 11.8 NaCl; 1 MgCl2; and 20 
HEPES titrated to pH 7.3 with KOH. Nystatin (at 250 μg ml-1) 
was added to an aliquot of solution just proximal to the pipette tip. 
To evoke action potentials, cells maintained at ~-70 mV, through 
injection of a small current (<-5 pA), were rapidly depolarized by 
application of +5 to +10 pA current pulses of variable duration. 
Voltage-clamp recordings were performed with cells bathed pTEAs-
PSS and the patch pipette filled with a Cs+ intracellular solution 
(Cs+-IS), where the K+ content of the standard IS was substituted 
with Cs+, conditions where voltage dependent Ca2+ currents (ICa) 
were likely to be easily quantified. The membrane potential (Vm) 
was stepped from a holding potential (Vhold) of -70 mV to the 
depolarized test potential (Vc) noted and evoked currents were leak 
subtracted using a standard p/4 protocol. As shown in Appendix 
Figure 1, the amplitudes of ICas often remained stable over 15–20 
minutes and showed no evidence of enhancement either by 
concentrations of glucose that evoke biphasic insulin secretion or 
by depolarizing pre-pulses.27 Action potentials were simulated in 
the voltage-clamp mode by applying a multi-segment sequence 
of ramp depolarizations that together closely resemble averaged 
features of action potentials recorded in current-clamp mode in 
response to brief depolarizing pulses from a holding current of -2 
to -5 pA. As shown in Appendix Figure 1C, in the presence of K+ 
channel blockade, the resulting current traces show (i) an initial 
rapidly activating and inactivating current “spike”, which is blocked 
by tetrodotoxin, followed by (ii) a more slowly activating and then 
deactivating current hump, enhanced by substitution of the CaCl2 
of the PSS (2 mM) with BaCl2 (2 mM).

(iii) Membrane capacitance changes (ΔCm) following membrane 
depolarization was usually estimated using an EPC-9 patch-
clamp amplifier (Heka Electronic, Lambrecht, Germany) and 
an in-house developed, software-based, dual frequency lock-in 
detector (LID) developed as a set of extensions (XOP modules) of 
the numerical/graphics package Igor (Wavemetrics, Inc., Oregon, 
USA).28 However, in selected experiments, where the responses to 
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