8,943 research outputs found

    Improvement of speech recognition by nonlinear noise reduction

    Full text link
    The success of nonlinear noise reduction applied to a single channel recording of human voice is measured in terms of the recognition rate of a commercial speech recognition program in comparison to the optimal linear filter. The overall performance of the nonlinear method is shown to be superior. We hence demonstrate that an algorithm which has its roots in the theory of nonlinear deterministic dynamics possesses a large potential in a realistic application.Comment: see urbanowicz.org.p

    Excitations of Bose-Einstein condensates in optical lattices

    Full text link
    In this paper we examine the excitations observable in atoms confined in an optical lattice around the superfluid-insulator transition. We use increases in the number variance of atoms, subsequent to tilting the lattice as the primary diagnostic of excitations in the lattice. We show that this locally determined quantity should be a robust indicator of coherence changes in the atoms observed in recent experiments. This was found to hold for commensurate or non-commensurate fillings of the lattice, implying our results will hold for a wide range of physical cases. Our results are in good agreement with the quantitative factors of recent experiments. We do, howevers, find extra features in the excitation spectra. The variation of the spectra with the duration of the perturbation also turns out to be an interesting diagnostic of atom dynamics.Comment: 6 pages, 7 figures, using Revtex4; changes to version 2: new data and substantial revision of tex

    MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre

    Full text link
    This paper describes the MegaPipe image processing pipeline at the Canadian Astronomical Data Centre. The pipeline combines multiple images from the MegaCam mosaic camera on CFHT and combines them into a single output image. MegaPipe takes as input detrended MegaCam images and does a careful astrometric and photometric calibration on them. The calibrated images are then resampled and combined into image stacks. The astrometric calibration of the output images is accurate to within 0.15 arcseconds relative to external reference frames and 0.04 arcseconds internally. The photometric calibration is good to within 0.03 magnitudes. The stacked images and catalogues derived from these images are available through the CADC website:Comment: Data available at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/megapipe/index.htm

    Numerical Study of TAP Metastable States in 3-body Ising Spin Glasses

    Full text link
    The distribution of solutions of the Thouless-Anderson-Palmer equation is studied by extensive numerical experiments for fully connected 3-body interaction Ising spin glass models in a level of annealed calculation. A recent study predicted that when the equilibrium state of the system is characterized by one-step replica symmetry breaking, the distribution is described by a Becchi-Rouet-Stora-Tyutin (BRST) supersymmetric solution in the relatively low free energy region, whereas the BRST supersymmetry is broken for higher values of free energy (Crisanti et al., Phys. Rev. B 71 (2005) 094202). Our experiments qualitatively reproduce the discriminative behavior of macroscopic variables predicted by the theoretical assessment.Comment: 13 pages, 4 figure

    The LiAl/FeS2 battery power source for the future

    Get PDF
    Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh

    Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field

    Get PDF
    We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic field. To compute the finite temperature effective potential, we use the Polyakov extended Nambu-Jona Lasinio model with eight-quark interactions taken into account. The bare quark mass is adjusted in order to reproduce the physical value of the vacuum pion mass. Our results show that the dressed Polyakov loop is very sensitive to the strenght of the magnetic field, and it is capable to capture both the deconfinement crossover and the chiral crossover. Besides, we compute self-consistently the phase diagram of the model. We find a tiny split of the two aforementioned crossovers as the strength of the magnetic field is increased. Concretely, for the largest value of magnetic field investigated here, eB=19mπ2eB=19 m_\pi^2, the split is of the order of 10%10\%. A qualitative comparison with other effective models and recent Lattice results is also performed.Comment: 10 pages, 3 figures, RevTeX4-1 styl

    Mass Shift and Width Broadening of J/psi in hot gluonic plasma from QCD Sum Rules

    Full text link
    We investigate possible mass shift and width broadening of J/psi in hot gluonic matter using QCD sum rule. Input values of gluon condensates at finite temperature are extracted from lattice QCD data for the energy density and pressure. Although stability of the moment ratio is achieved only up to T/Tc ~ 1.05, the gluon condensates cause a decrease of the moment ratio, which results in change of spectral properties. Using the Breit-Wigner form for the phenomenological side, we find that mass shift of J/psi just above Tc can reach maximally 200 MeV and width can broaden to dozens of MeV.Comment: 4 pages, 5 figures, version to appear in Physical Review Letter

    Numerical method for evolving the Projected Gross-Pitaevskii equation

    Full text link
    In this paper we describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for a Bose gas in a harmonic oscillator potential. The central difficulty in solving this equation is the requirement that the classical field is restricted to a small set of prescribed modes that constitute the low energy classical region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the PGPE. We show equilibrium and non-equilibrium results from the application of the PGPE to an anisotropic trapped three-dimensional Bose gas.Comment: 12 pages, 5 figures. To appear in Phys. Rev. E. Convergence results added, a few minor changes made and typos fixe

    Phase transitions in diluted negative-weight percolation models

    Full text link
    We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negative weight. The resulting percolation problem is fundamentally different from conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we investigate how the percolation transition is affected by additional dilution. We consider two types of dilution: either a certain fraction of edges exhibit zero weight, or a fraction of edges is even absent. We study these systems numerically using exact combinatorial optimization techniques based on suitable transformations of the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does not change the universality class compared to the undiluted case whereas the second type of dilution leads to a change of the universality class.Comment: 8 pages, 7 figure

    Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry

    Full text link
    Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit coupling are presented. The half-space Green's function for such a superconductor is determined. This is then used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound CePt3_3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for different crystallographic orientations and different weights of singlet and triplet components of the pairing state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide a direct connection between unconventional pairing in superconductors of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure
    corecore