8,943 research outputs found
Improvement of speech recognition by nonlinear noise reduction
The success of nonlinear noise reduction applied to a single channel
recording of human voice is measured in terms of the recognition rate of a
commercial speech recognition program in comparison to the optimal linear
filter. The overall performance of the nonlinear method is shown to be
superior. We hence demonstrate that an algorithm which has its roots in the
theory of nonlinear deterministic dynamics possesses a large potential in a
realistic application.Comment: see urbanowicz.org.p
Excitations of Bose-Einstein condensates in optical lattices
In this paper we examine the excitations observable in atoms confined in an
optical lattice around the superfluid-insulator transition. We use increases in
the number variance of atoms, subsequent to tilting the lattice as the primary
diagnostic of excitations in the lattice. We show that this locally determined
quantity should be a robust indicator of coherence changes in the atoms
observed in recent experiments. This was found to hold for commensurate or
non-commensurate fillings of the lattice, implying our results will hold for a
wide range of physical cases. Our results are in good agreement with the
quantitative factors of recent experiments. We do, howevers, find extra
features in the excitation spectra. The variation of the spectra with the
duration of the perturbation also turns out to be an interesting diagnostic of
atom dynamics.Comment: 6 pages, 7 figures, using Revtex4; changes to version 2: new data and
substantial revision of tex
MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre
This paper describes the MegaPipe image processing pipeline at the Canadian
Astronomical Data Centre. The pipeline combines multiple images from the
MegaCam mosaic camera on CFHT and combines them into a single output image.
MegaPipe takes as input detrended MegaCam images and does a careful astrometric
and photometric calibration on them. The calibrated images are then resampled
and combined into image stacks. The astrometric calibration of the output
images is accurate to within 0.15 arcseconds relative to external reference
frames and 0.04 arcseconds internally. The photometric calibration is good to
within 0.03 magnitudes. The stacked images and catalogues derived from these
images are available through the CADC website:Comment: Data available at
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/megapipe/index.htm
Numerical Study of TAP Metastable States in 3-body Ising Spin Glasses
The distribution of solutions of the Thouless-Anderson-Palmer equation is
studied by extensive numerical experiments for fully connected 3-body
interaction Ising spin glass models in a level of annealed calculation. A
recent study predicted that when the equilibrium state of the system is
characterized by one-step replica symmetry breaking, the distribution is
described by a Becchi-Rouet-Stora-Tyutin (BRST) supersymmetric solution in the
relatively low free energy region, whereas the BRST supersymmetry is broken for
higher values of free energy (Crisanti et al., Phys. Rev. B 71 (2005) 094202).
Our experiments qualitatively reproduce the discriminative behavior of
macroscopic variables predicted by the theoretical assessment.Comment: 13 pages, 4 figure
The LiAl/FeS2 battery power source for the future
Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh
Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field
We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic
field. To compute the finite temperature effective potential, we use the
Polyakov extended Nambu-Jona Lasinio model with eight-quark interactions taken
into account. The bare quark mass is adjusted in order to reproduce the
physical value of the vacuum pion mass. Our results show that the dressed
Polyakov loop is very sensitive to the strenght of the magnetic field, and it
is capable to capture both the deconfinement crossover and the chiral
crossover. Besides, we compute self-consistently the phase diagram of the
model. We find a tiny split of the two aforementioned crossovers as the
strength of the magnetic field is increased. Concretely, for the largest value
of magnetic field investigated here, , the split is of the order
of . A qualitative comparison with other effective models and recent
Lattice results is also performed.Comment: 10 pages, 3 figures, RevTeX4-1 styl
Mass Shift and Width Broadening of J/psi in hot gluonic plasma from QCD Sum Rules
We investigate possible mass shift and width broadening of J/psi in hot
gluonic matter using QCD sum rule. Input values of gluon condensates at finite
temperature are extracted from lattice QCD data for the energy density and
pressure. Although stability of the moment ratio is achieved only up to T/Tc ~
1.05, the gluon condensates cause a decrease of the moment ratio, which results
in change of spectral properties. Using the Breit-Wigner form for the
phenomenological side, we find that mass shift of J/psi just above Tc can reach
maximally 200 MeV and width can broaden to dozens of MeV.Comment: 4 pages, 5 figures, version to appear in Physical Review Letter
Numerical method for evolving the Projected Gross-Pitaevskii equation
In this paper we describe a method for evolving the projected
Gross-Pitaevskii equation (PGPE) for a Bose gas in a harmonic oscillator
potential. The central difficulty in solving this equation is the requirement
that the classical field is restricted to a small set of prescribed modes that
constitute the low energy classical region of the system. We present a scheme,
using a Hermite-polynomial based spectral representation, that precisely
implements this mode restriction and allows an efficient and accurate solution
of the PGPE. We show equilibrium and non-equilibrium results from the
application of the PGPE to an anisotropic trapped three-dimensional Bose gas.Comment: 12 pages, 5 figures. To appear in Phys. Rev. E. Convergence results
added, a few minor changes made and typos fixe
Phase transitions in diluted negative-weight percolation models
We investigate the geometric properties of loops on two-dimensional lattice
graphs, where edge weights are drawn from a distribution that allows for
positive and negative weights. We are interested in the appearance of spanning
loops of total negative weight. The resulting percolation problem is
fundamentally different from conventional percolation, as we have seen in a
previous study of this model for the undiluted case.
Here, we investigate how the percolation transition is affected by additional
dilution. We consider two types of dilution: either a certain fraction of edges
exhibit zero weight, or a fraction of edges is even absent. We study these
systems numerically using exact combinatorial optimization techniques based on
suitable transformations of the graphs and applying matching algorithms. We
perform a finite-size scaling analysis to obtain the phase diagram and
determine the critical properties of the phase boundary.
We find that the first type of dilution does not change the universality
class compared to the undiluted case whereas the second type of dilution leads
to a change of the universality class.Comment: 8 pages, 7 figure
Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry
Theoretical studies of a planar tunnel junction between two superconductors
with antisymmetric spin-orbit coupling are presented. The half-space Green's
function for such a superconductor is determined. This is then used to derive
expressions for the dissipative current and the Josephson current of the
junction. Numerical results are presented in the case of the Rashba spin-orbit
coupling, relevant to the much studied compound CePtSi. Current-voltage
diagrams, differential conductance and the critical Josephson current are
presented for different crystallographic orientations and different weights of
singlet and triplet components of the pairing state. The main conclusion is
that Josephson junctions with different crystallographic orientations may
provide a direct connection between unconventional pairing in superconductors
of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure
- …