11 research outputs found

    Functional imaging using fluorine ((19)F) MR methods: basic concepts

    Get PDF
    Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine ((19)F) MRI in biomedical research to study functional changes during disease states. (19)F MRI represents an instrumental tool for the quantification of exogenous (19)F substances in vivo. One of the major benefits of (19)F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous (19)F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of (19)F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis

    Nanodiamond–Gadolinium(III) Aggregates for Tracking Cancer Growth In Vivo at High Field

    Get PDF
    The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond–gadolinium­(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium­(III) [Gd­(III)]–nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd­(III) compared to that of clinical Gd­(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by <i>T</i><sub>1</sub>- and <i>T</i><sub>2</sub>-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities
    corecore