314 research outputs found

    Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    Get PDF
    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed

    Dynamic stresses in the lhc tcds diluter from 7tev beam loading

    Get PDF

    Characterization of Two Distinct Calcium-Binding Sites in the Amino-Terminus of Human Profilaggrin

    Get PDF
    Profilaggrin is a large phosphorylated protein (approximately 400 kDa In humans) that is expressed in the granular cells of epidermis where it forms a major component of keratohyalin. It consists of multiple copies of similar filaggrin units plus amino- and carboxy-terminal domains that differ from filaggrin. Proteolytic processing of profilaggrin during terminal differentiation results in the removal of these domains and generation of monomeric filaggrin units, which associate with keratin intermediate filaments to form macrofibrils in the stratum corneum. The amino-terminal domain contains two calcium-binding motifs similar to the EF-hands found in the S-100 family of calcium-binding proteins. In this report, we expressed the 293-residue amino-terminal pro-domain of human profilaggrin as a polyhistidine fusion protein in Escherichia coli, and characterized calcium binding by a 45Ca++ binding assay and fluorescence emission spectroscopy. fluorescence measurements indicated that the profilaggrin polypeptide undergoes conformational changes upon the removal of Ca++ with ethylenediamine tetraacetic acid, demonstrating the presence of two calcium-binding sites with affinities for calcium that differ ninefold (1.4 Ă— 10-4 M and 1.2 Ă— 10-3 M). We suggest that this functional calcium-binding domain at the amino-terminus of human profilaggrin plays a role in profilaggrin processing and in other calcium-dependent processes during terminal differentiation of the epidermis

    Design of the LHC Beam Dump Entrance Window

    Get PDF
    7 TeV proton beams from the LHC are ejected through a 600 m long beam dump transfer line vacuum chamber to a beam dump block. The dump block is contained within an inert gas-filled vessel to prevent a possible fire risk. The dump vessel and transfer line are separated by a 600 mm diameter window, which must withstand both the static pressure load and thermal shock from the passage of the LHC beam. In a previous paper [1] the functional requirements and conceptual design of this window were outlined. This paper describes the analysis leading to the final design of the window. The choice of materials is explained and tests performed on the prototype window are summarized

    Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    Get PDF
    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation

    Mechanisms of Electrical Conductivity in Y(1-x)CaxBa2Cu3O6.1 System

    Full text link
    Systematic studies of transport properties in deoxygenated Y(1-x)CaxBa2Cu3O6.1 series allowed to propose a diagram of conductivity mechanisms for this system. At intermediate temperature a variable range hopping (VRH) in 2 dimensions prevails. At lower temperature VRH in the presence of a Coulomb gap for smaller x and VRH in 2 dimensions for larger x are found. In a vicinity of superconductivity we observe conductivity proportional to \sqrt{T}. Thermally activated conductivity dominates at higher temperature. This diagram may be universal for the whole family of undoped high Tc related cuprates.Comment: 5 page

    Reliability of corticospinal excitability and intracortical inhibition in biceps femoris during different contraction modes

    Get PDF
    This study aimed to determine the test–retest reliability of a range of transcranial magnetic stimulation (TMS) outcomes in the biceps femoris during isometric, eccentric and concentric contractions. Corticospinal excitability (active motor threshold 120% [AMT120%] and area under recruitment curve [AURC]), short- and long-interval intracortical inhibition (SICI and LICI) and intracortical facilitation (ICF) were assessed from the biceps femoris in 10 participants (age 26.3 ± 6.0 years; height 180.2 ± 6.6 cm, body mass 77.2 ± 8.0 kg) in three sessions. Single- and paired-pulse stimuli were delivered under low-level muscle activity (5% ± 2% of maximal isometric root mean squared surface electromyography [rmsEMG]) during isometric, concentric and eccentric contractions. Participants were provided visual feedback on their levels of rmsEMG during all contractions. Single-pulse outcomes measured during isometric contractions (AURC, AMT110%, AMT120%, AMT130%, AMT150%, AMT170%) demonstrated fair to excellent reliability (ICC range, .51 to .92; CV%, 21% to 37%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .62 to .80; CV%, 19 to 42%). Single-pulse outcomes measured during concentric contractions demonstrated excellent reliability (ICC range, .75 to .96; CV%, 15% to 34%), whereas SICI, LICI and ICF demonstrated good to excellent reliability (ICC range, .65 to .76; CV%, 16% to 71%). Single-pulse outcomes during eccentric contractions demonstrated fair to excellent reliability (ICC range, .56 to .96; CV%, 16% to 41%), whereas SICI, LICI and ICF demonstrated good to excellent (ICC range, .67 to .86; CV%, 20% to 42%). This study found that both single- and paired-pulse TMS outcomes can be measured from the biceps femoris muscle across all contraction modes with fair to excellent reliability. However, coefficient of variation values were typically greater than the smallest worthwhile change which may make tracking physiological changes in these variables difficult without moderate to large effect sizes

    Nodal Quasiparticle Dispersion in Strongly Correlated d-wave Superconductors

    Full text link
    We analyze the effects of a momentum-dependent self-energy on the photoemission momentum distribution curve (MDC) lineshape, dispersion and linewidth. We illustrate this general analysis by a detailed examination of nodal quasiparticles in high Tc cuprates. We use variational results for the nodal quasiparticle weight Z (which varies rapidly with hole doping x) and the low energy Fermi velocity vFlowv_F^{low} (which is independent of x), to show that the high energy MDC dispersion vhigh=vFlow/Zv_{high} = v_F^{low}/Z, so that it is much larger than the bare (band structure) velocity and also increases strongly with underdoping. We also present arguments for why the low energy Fermi velocity and the high energy dispersion are independent of the bare band structure at small x. All of these results are in good agreement with earlier and recent photoemission data [Zhou et al, Nature 423, 398 (2003)].Comment: 4 pages, 3 eps fig

    Understanding self-reported difficulties in decision-making by people with autism spectrum disorders.

    Get PDF
    Autobiographical accounts and a limited research literature suggest that adults with autism spectrum disorders can experience difficulties with decision-making. We examined whether some of the difficulties they describe correspond to quantifiable differences in decision-making when compared to adults in the general population. The participants (38 intellectually able adults with autism spectrum disorders and 40 neurotypical adults) were assessed on three tasks of decision-making (Iowa Gambling Task, Cambridge Gamble Task and Information Sampling Task), which quantified, respectively, decision-making performance and relative attention to negative and positive outcomes, speed and flexibility, and information sampling. As a caution, all analyses were repeated with a subset of participants ( nASD = 29 and nneurotypical = 39) who were not taking antidepressant or anxiolytic medication. Compared to the neurotypical participants, participants with autism spectrum disorders demonstrated slower decision-making on the Cambridge Gamble Task, and superior performance on the Iowa Gambling Task. When those taking the medications were excluded, participants with autism spectrum disorders also sampled more information. There were no other differences between the groups. These processing tendencies may contribute to the difficulties self-reported in some contexts; however, the results also highlight strengths in autism spectrum disorders, such as a more logical approach to, and care in, decision-making. The findings lead to recommendations for how adults with autism spectrum disorders may be better supported with decision-making.The research reported here was carried out by the first author (Lydia Vella, née Luke) as part of her PhD in the Department of Psychiatry, University of Cambridge, and was supported by a Pinsent Darwin Studentship in Mental Health; University of Cambridge Domestic Research Studentship; the Charles Slater Fund; and the Marmaduke Sheild Fund. IC was supported during the preparation of this paper by the National Institute of Health Research (NIHR) Collaboration for Applied Health Research and Care (CLAHRC) East of England at Cambridgeshire & Peterborough NHS Foundation Trust. We are grateful to all our funders for their support. The paper describes independent research and the views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health

    Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates

    Full text link
    Specific proteolysis plays an important role in the terminal differentiation of keratinocytes in the epidermis and several types of proteases have been implicated in this process. The proprotein convertases (PCs) are a family of Ca 2+ -dependent serine proteases involved in processing and activation of several types of substrates. In this study we examined the expression and some potential substrates of PCs in epidermis. Four PCs are expressed in epidermis: furin, PACE4, PC5/6 and PC7/8. Furin is detected in two forms, either with or without the transmembrane domain, suggesting occurrence of post-translational cleavage to produce a soluble enzyme. In addition the furin active site has differential accessibility in the granular layer of the epidermis relative to the basal layer, whereas antibodies to the transmembrane domain stain both layers. These findings suggest that furin has access to different types of substrates in granular cells as opposed to basal cells. PC7/8, in contrast, is detected throughout the epidermis with antibodies to both the transmembrane and active site and no soluble form observed. A peptide PC inhibitor (dec-RVKR-CMK) inhibits cleavage of Notch-1, a receptor important in cell fate determination that is found throughout the epidermis. Profilaggrin, found in the granular layer, is specifically cleaved by furin and PACE4 in vitro at a site between the amino terminus and the first filaggrin repeat. This work suggests that the PCs play multiple roles during epidermal differentiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75749/1/j.1600-0625.2001.010003193.x.pd
    • …
    corecore