814 research outputs found
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
Band Crossing and Novel Low-Energy Behaviour in a Mean Field Theory of a Three-Band Model on a Cu--O lattice
We study correlation effects in a three-band extended Hubbard model of Cu --
O planes within the 1/N mean field approach, in the infinite U limit. We
investigate the emerging phase diagram and discuss the low energy scales
associated with each region. With increasing direct overlap between oxygen
orbitals, , the solution displays a band crossing which, for an
extended range of parameters, lies close to the Fermi level. In turn this leads
to the nearly nested character of the Fermi surface and the resulting linear
temperature dependence of the quasi-particle relaxation rate for sufficiently
large T. We also discuss the effect of band crossing on the optical
conductivity and comment on the possible experimental relevance of our
findings.Comment: 12 pages, Latex-Revtex, 6 PostScript figures. Submitted to Phys. Rev.
Collisional cross sections and momentum distributions in astrophysical plasmas: dynamics and statistical mechanics link
We show that, in stellar core plasmas, the one-body momentum distribution
function is strongly dependent, at least in the high velocity regime, on the
microscopic dynamics of ion elastic collisions and therefore on the effective
collisional cross sections, if a random force field is present. We take into
account two cross sections describing ion-dipole and ion-ion screened
interactions. Furthermore we introduce a third unusual cross section, to link
statistical distributions and a quantum effect originated by the
energy-momentum uncertainty owing to many-body collisions, and propose a
possible physical interpretation in terms of a tidal-like force. We show that
each collisional cross section gives rise to a slight peculiar correction on
the Maxwellian momentum distribution function in a well defined velocity
interval. We also find a possible link between microscopical dynamics of ions
and statistical mechanics interpreting our results in the framework of
non-extensive statistical mechanics.Comment: 8 page
Random paths and current fluctuations in nonequilibrium statistical mechanics
An overview is given of recent advances in nonequilibrium statistical
mechanics about the statistics of random paths and current fluctuations.
Although statistics is carried out in space for equilibrium statistical
mechanics, statistics is considered in time or spacetime for nonequilibrium
systems. In this approach, relationships have been established between
nonequilibrium properties such as the transport coefficients, the thermodynamic
entropy production, or the affinities, and quantities characterizing the
microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate.
This overview presents results for classical systems in the escape-rate
formalism, stochastic processes, and open quantum systems
A high-resolution record of early Paleozoic climate
The spatial coverage and temporal resolution of the Early Paleozoic paleoclimate record are limited, primarily due to the paucity of well-preserved skeletal material commonly used for oxygen-isotope paleothermometry. Bulk-rock δ¹⁸O datasets can provide broader coverage and higher resolution, but are prone to burial alteration. We assess the diagenetic character of two thick Cambro–Ordovician carbonate platforms with minimal to moderate burial by pairing clumped and bulk isotope analyses of micritic carbonates. Despite resetting of the clumped-isotope thermometer at both sites, our samples indicate relatively little change to their bulk δ¹⁸O due to low fluid exchange. Consequently, both sequences preserve temporal trends in δ¹⁸O. Motivated by this result, we compile a global suite of bulk rock δ¹⁸O data, stacking overlapping regional records to minimize diagenetic influences on overall trends. We find good agreement of bulk rock δ¹⁸O with brachiopod and conodont δ¹⁸O trends through time. Given evidence that the δ¹⁸O value of seawater has not evolved substantially through the Phanerozoic, we interpret this record as primarily reflecting changes in tropical, nearshore seawater temperatures and only moderately modified by diagenesis. Focusing on the samples with the most enriched, and thus likely least-altered, δ¹⁸O values, we reconstruct Late Cambrian warming, Early Ordovician extreme warmth, and cooling around the Early–Middle Ordovician boundary. Our record is consistent with models linking the Great Ordovician Biodiversification Event to cooling of previously very warm tropical oceans. In addition, our high-temporal-resolution record suggests previously unresolved transient warming and climate instability potentially associated with Late Ordovician tectonic events
Kinetic Theory of a Dilute Gas System under Steady Heat Conduction
The velocity distribution function of the steady-state Boltzmann equation for
hard-core molecules in the presence of a temperature gradient has been obtained
explicitly to second order in density and the temperature gradient. Some
thermodynamical quantities are calculated from the velocity distribution
function for hard-core molecules and compared with those for Maxwell molecules
and the steady-state Bhatnagar-Gross-Krook(BGK) equation. We have found
qualitative differences between hard-core molecules and Maxwell molecules in
the thermodynamical quantities, and also confirmed that the steady-state BGK
equation belongs to the same universality class as Maxwell molecules.Comment: 36 pages, 4 figures, 5 table
Active Ooid Growth Driven By Sediment Transport in a High-Energy Shoal, Little Ambergris Cay, Turks and Caicos Islands
Ooids are a common component of carbonate successions of all ages and present significant potential as paleoenvironmental proxies, if the mechanisms that control their formation and growth can be understood quantitatively. There are a number of hypotheses about the controls on ooid growth, each offering different ideas on where and how ooids accrete and what role, if any, sediment transport and abrasion might play. These hypotheses have not been well tested in the field, largely due to the inherent challenges of tracking individual grains over long timescales. This study presents a detailed field test of ooid-growth hypotheses on Little Ambergris Cay in the Turks and Caicos Islands, British Overseas Territories. This field site is characterized by westward net sediment transport from waves driven by persistent easterly trade winds. This configuration makes it possible to track changes in ooid properties along their transport path as a proxy for changes in time. Ooid size, shape, and radiocarbon age were compared along this path to determine in which environments ooids are growing or abrading. Ooid surface textures, petrographic fabrics, stable-isotope compositions (δ^(13)C, δ^(18)O, and δ^(34)S), lipid geochemistry, and genetic data were compared to characterize mechanisms of precipitation and degradation and to determine the relative contributions of abiotic (e.g., abiotic precipitation, physical abrasion) and biologically influenced processes (e.g., biologically mediated precipitation, fabric destruction through microbial microboring and micritization) to grain size and character. A convergence of evidence shows that active ooid growth occurs along the transport path in a high-energy shoal environment characterized by frequent suspended-load transport: median ooid size increases by more than 100 μm and bulk radiocarbon ages decrease by 360 yr westward along the ∼ 20 km length of the shoal crest. Lipid and 16S rRNA data highlight a spatial disconnect between the environments with the most extensive biofilm colonization and environments with active ooid growth. Stable-isotope compositions are indistinguishable among samples, and are consistent with abiotic precipitation of aragonite from seawater. Westward increases in ooid sphericity and the abundance of well-polished ooids illustrate that ooids experience subequal amounts of growth and abrasion—in favor of net growth—as they are transported along the shoal crest. Overall, these results demonstrate that, in the Ambergris system, the mechanism of ooid growth is dominantly abiotic and the loci of ooid growth is determined by both carbonate saturation and sediment transport mode. Microbes play a largely destructive, rather than constructive, role in ooid size and fabric
Determination of Omega_b From Big Bang Nucleosynthesis in the Presence of Regions of Antimatter
Production of regions of antimatter in the early universe is predicted in
many baryogenesis models. Small scale antimatter regions would annihilate
during or soon after nucleosynthesis, affecting the abundances of the light
elements. In this paper we study how the acceptable range in Omega_b changes in
the presence of antimatter regions, as compared to the standard big bang
nucleosynthesis. It turns out that it is possible to produce at the same time
both a low 4He value (Y_p < 0.240) and a low D/H value (D/H < 4e-5), but
overproduction of 7Li is unavoidable at large Omega_b.Comment: 9 pages, PRD version, ref. 6 correcte
Clear cell chondrosarcoma of the head and neck
Clear cell chondrosarcoma is a rare variant of chondrosarcoma that mostly involves the end of long bones. However, nine cases have been reported in the head and neck: four in larynx, two in nasal septum, two in maxilla and one in the skull. These cases form the basis of this review. Head and neck cases accounts for less than 5% of Clear cell chondrosarcomas in the whole body and the larynx is the most common place. The histological findings of head and neck cases are consistent with general features of this entity in the whole body and nearly all tumors in this case series had a component of conventional chondrosarcoma. Clear cell chondrosarcoma is an intracompartmental tumor and retains "Grenz zone" just beneath the epithelium. Therefore, the overlying mucosa remained intact in all laryngeal cases. Nasal tumor caused ballooning of the septum and the maxillary lesion did not involve the oral mucosa. This tumor presents various radiographic features in the head and neck area. Chondroblastoma, chondroma, osteoblastoma, osteosarcoma and metastatic renal cell carcinoma are included in the histologic differential diagnoses. Differentiation from chondroblastic osteosarcoma is important in the maxilla. A wide resection is adequate in most cases. However, some laryngeal cases show tendency to recur. Clear cell chondrosarcoma is a slow growing tumor and this necessitates a long time follow-up of patients. Due to the extreme rarity in the head and neck, diagnosis of Clear cell chondrosarcoma in this area, must be confirmed by histochemical and immunohistochemical studies
- …