4,374 research outputs found

    Selected bibliography of remote sensing

    Get PDF
    Bibliography of remote sensing techniques for analysis and assimilation of geographic dat

    The Transformation of American Energy Markets and the Problem of Market Power

    Get PDF
    Traditionally, American energy markets have been regulated using a combination of antitrust law and public utility law: the former has predominated in oil markets and the latter in markets for natural gas and electricity. Over time, energy markets have grown increasingly complex and competitive, due partly to changing market conditions (for example, in oil markets) and partly to regulation (in natural gas and electricity markets). Increasingly competitive energy markets meant increased risk for energy companies; those companies turned to energy derivatives as a way to hedge that risk. High energy prices and charges of manipulation in twenty-first century energy markets have led regulators to a new approach, one that borrows from securities regulation and focuses attention on “manipulation and deceit” by energy market participants. The securities model may be a bad fit for energy markets, however, because reliance on this new approach exposes consumers to price risks associated with the exercise of market power by sellers, risks to which buyers were not subject under traditional approaches to regulation. Specifically, the securities regulation model overlooks important ways in which sellers can exert market power at the expense of consumers in the absence of fraud or deceit. This is due to the way securities case law interprets the term “manipulation,” and to some regulators’ common assumptions about the ways in which market participants respond to price changes—assumptions that do not apply or apply only weakly in some energy markets. In this Article, we explore the origins of these “bad fit” problems, and examine their implications for the future of American energy markets

    Remote sensing in Michigan for land resource management

    Get PDF
    The Environmental Research Institute of Michigan is conducting a program whose goal is the large-scale adoption, by both public agencies and private interests in Michigan, of NASA earth-resource survey technology as an important aid in the solution of current problems in resource management and environmental protection. During the period from June 1975 to June 1976, remote sensing techniques to aid Michigan government agencies were used to achieve the following major results: (1) supply justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (2) recommend economical and effective methods for performing a statewide wetlands survey; (3) assist in the enforcement of state laws relating to sand and gravel mining, soil erosion and sedimentation, and shorelands protection; (4) accomplish a variety of regional resource management actions in the East Central Michigan Planning and Development Region. Other tasks on which remote sensing technology was used include industrial and school site selection, ice detachment in the Soo Harbor, grave detection, and data presentation for wastewater management programs

    Allozyme diversity and geographic variation in the widespread coastal sedge, Carex arenaria

    Get PDF
    Allozyme electrophoresis was used to investigate the structure of genetic variation in the rhizomatous coastal sedge, Carex arenaria, throughout its European range — from the SW Iberian peninsula to the Baltic region. Material was sampled from 77 sites in five geographic regions. Nine of the 13 investigated loci were polymorphic in the total material and there were interregional differences in the number of polymorphic loci per site and the percentage of variable sites. In the Scandinavia/Baltic region only 61% of the sites contained at least one locus with more than one allele, whereas all the British and SW Iberian sites were variable. There was a general tendency for the regional frequencies of the less common alleles at individual loci to decline from SW to NE. The mean (over loci and sites) within-site gene diversity (H ¯site) was 0.064 (in calculations based on the number of observed multilocus allozyme genotypes within each sampling site). Although there was considerable variation between geographically adjacent sites, within-site diversity showed a general decrease from SW to NE in Europe. There were significant differences in within-region gene diversity (Hreg) for the four most variable loci between the five regions. Hreg generally decreased from SW to NE Europe and most loci showed the highest diversity in the SW Iberian peninsula and the Bay of Biscay regions. The mean (over loci) gene diversity in the total material (Htot) was 0.070 and the levels of diversity in Carex arenaria are substantially lower than is usual in rhizomatous sedges. The within-site, between-site and between-regional components of the total diversity were 92.4%, 2.5% and 5.1%, respectively. The low levels of overall gene diversity in C. arenaria and the successive decrease in diversity from SW to NE are interpreted in terms of the species' history of postglacial spread into northern Europe. Despite the overall northwards decrease in diversity, the widespread occurrence of less common alleles and the lack of regional deviations from Hardy–Weinberg genotype frequency expectations suggest that C. arenaria is not predominantly self-fertilized

    AW0521 - Determining potential impacts of Precision Breeding on Animal Welfare FINAL REPORT

    Get PDF
    1. Introduction of the Genetic Technology (Precision Breeding) Act in 2023 paved the way for the use of precision breeding technologies (e.g., genome editing) in livestock in England. However, while recognising that there may be major benefits inferred by increased disease resistance and other traits, concern has been raised about the possible wider effects of the use of the technology on animal welfare. This project aimed to understand the current situation with respect to level of use and development of precision-bred animals and to consider what welfare indicators should be used to assess welfare in general, and for specific types of edits.2. A mapping and scoping phase indicated that few companies have initiated data collection or development of precision-bred animals that might be present in/be imported into England. The pig and fish sectors were the only sectors to indicate that development has commenced. Mapping suggested that the first animals are bred in research/university environments where animals are kept under the auspices of ASPA. Apart from the fish and pig sectors, the chicken, cattle and sheep sectors also expressed some interest in developing precision-bred animals in the near future (I.e.., in the next 5 years). For the equine sector, only a few stakeholders expressed some interest in using precison-breeding technologies to improve specific traits such as disease resistance or resilience to environmental stress, but there is no intention to use PB in equine breeding practice in the immediate future. 3. Expert consultation and a review of the literature indicated that the Five Domains Model was the most appropriate of current animal welfare models to use to build indicator lists. This model includes nutritional state, health, environmental responses, behavioural interactions and mental state. While most animal welfare assessment protocols assess the effects of housing and management on welfare outcomes for animals, it is biological functioning that is the most important aspect to assess in the precision breeding context.4. Welfare assessment indicator lists were drawn up for the three main species that are in the most advanced stage of use of precision breeding. These were pigs, poultry and salmon. Indicator lists were constructed that drew on industry handbooks, current animal welfare assessment schemes and relevant literature. These indicator lists aimed to facilitate a holistic assessment of overall animal welfare to detect changes in functioning across the Five Domains. The indicator lists contain welfare indicators that assess the animal across its EVID4 Evidence Project Final Report (Rev. 06/11) Page 3 of 21lifetime, compared with a control group of the same breed and same age and sex ratio. Three levels of assessment were considered: basic, enhanced and enhanced plus. The basic level of assessment does not fully cover the five domains in all three species, so SRUC strongly recommends that the enhanced level of assessment is adopted.5. In addition to the overall welfare assessment indicator lists, three cases studies were considered to determine how and when to add additional welfare indicators to these lists. The aim was to cover welfare-related traits and production-relate traits. To this end, the specific traits considered were PRRS virus, avian influenza and the hypothetical case of myostatin in fish. As animals carrying these edits are not available for inspection, a risk assessment was limited to ‘consequence characterisation’: ie., identifying possible consequences of gene editing on welfare. These case studies showed that a wider consideration of the edit and the pathways involved needs to be investigated. In addition to the overall holistic assessment using the Basic, Enhanced or Enhanced Plus levels, assessment using additional welfare indicators that are relevant to the specific edit may be required.6. Three webinars/workshops were held to present results to stakeholders. In addition, a meeting was held with equine stakeholders and numerous discussions were held with individual stakeholders to gain information on aspects of precision breeding

    AW0521 - Determining potential impacts of Precision Breeding on Animal Welfare FINAL REPORT

    Get PDF
    1. Introduction of the Genetic Technology (Precision Breeding) Act in 2023 paved the way for the use of precision breeding technologies (e.g., genome editing) in livestock in England. However, while recognising that there may be major benefits inferred by increased disease resistance and other traits, concern has been raised about the possible wider effects of the use of the technology on animal welfare. This project aimed to understand the current situation with respect to level of use and development of precision-bred animals and to consider what welfare indicators should be used to assess welfare in general, and for specific types of edits.2. A mapping and scoping phase indicated that few companies have initiated data collection or development of precision-bred animals that might be present in/be imported into England. The pig and fish sectors were the only sectors to indicate that development has commenced. Mapping suggested that the first animals are bred in research/university environments where animals are kept under the auspices of ASPA. Apart from the fish and pig sectors, the chicken, cattle and sheep sectors also expressed some interest in developing precision-bred animals in the near future (I.e.., in the next 5 years). For the equine sector, only a few stakeholders expressed some interest in using precison-breeding technologies to improve specific traits such as disease resistance or resilience to environmental stress, but there is no intention to use PB in equine breeding practice in the immediate future. 3. Expert consultation and a review of the literature indicated that the Five Domains Model was the most appropriate of current animal welfare models to use to build indicator lists. This model includes nutritional state, health, environmental responses, behavioural interactions and mental state. While most animal welfare assessment protocols assess the effects of housing and management on welfare outcomes for animals, it is biological functioning that is the most important aspect to assess in the precision breeding context.4. Welfare assessment indicator lists were drawn up for the three main species that are in the most advanced stage of use of precision breeding. These were pigs, poultry and salmon. Indicator lists were constructed that drew on industry handbooks, current animal welfare assessment schemes and relevant literature. These indicator lists aimed to facilitate a holistic assessment of overall animal welfare to detect changes in functioning across the Five Domains. The indicator lists contain welfare indicators that assess the animal across its EVID4 Evidence Project Final Report (Rev. 06/11) Page 3 of 21lifetime, compared with a control group of the same breed and same age and sex ratio. Three levels of assessment were considered: basic, enhanced and enhanced plus. The basic level of assessment does not fully cover the five domains in all three species, so SRUC strongly recommends that the enhanced level of assessment is adopted.5. In addition to the overall welfare assessment indicator lists, three cases studies were considered to determine how and when to add additional welfare indicators to these lists. The aim was to cover welfare-related traits and production-relate traits. To this end, the specific traits considered were PRRS virus, avian influenza and the hypothetical case of myostatin in fish. As animals carrying these edits are not available for inspection, a risk assessment was limited to ‘consequence characterisation’: ie., identifying possible consequences of gene editing on welfare. These case studies showed that a wider consideration of the edit and the pathways involved needs to be investigated. In addition to the overall holistic assessment using the Basic, Enhanced or Enhanced Plus levels, assessment using additional welfare indicators that are relevant to the specific edit may be required.6. Three webinars/workshops were held to present results to stakeholders. In addition, a meeting was held with equine stakeholders and numerous discussions were held with individual stakeholders to gain information on aspects of precision breeding

    A quantitative assessment of primary and secondary immune responses in cattle using a B cell ELISPOT assay

    Get PDF
    The aim of the study was to build a comprehensive picture of the appearance in the blood stream of Ag-specific plasma cells and memory B cells in the bovine model. For this purpose, we have developed a method allowing the detection and quantification of both cell types within individual calves immunised with ovalbumin. During the primary response, we detected a burst of ovalbumin-specific plasma cells at days 6 and 7 post-immunisation, which was followed by the production of specific Ab, whereas a gradual increase of memory B cells was only detected from day 15. As expected, a boost immunisation performed 7 weeks later induced a quicker and stronger secondary response. Indeed, a burst of plasma cells was detected in the blood at days 3 and 4, which was followed by a strong increase in Ab titres. Furthermore, a burst of memory B cells, and not a gradual increase, was detected at days 5 and 6 post-boost immunisation. Importantly, we showed a strong correlation between the anti-ovalbumin-specific IgG titres detected 5 months after secondary immunisation and the plasma cell numbers detected in the blood at the peak response after secondary immunisation. The detection and quantification of plasma cells following an immunisation/vaccination strategy could constitute a very effective means for predicting the magnitude and longevity of an Ab response

    Comment on "The global tree restoration potential"

    Get PDF
    Bastin et al. (Reports, 5 July 2019, p. 76) state that the restoration potential of new forests globally is 205 gigatonnes of carbon, conclude that “global tree restoration is our most effective climate change solution to date,” and state that climate change will drive the loss of 450 million hectares of existing tropical forest by 2050. Here we show that these three statements are incorrect

    Global leaf-trait mapping based on optimality theory

    Get PDF
    Aim Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine-learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco-evolutionary optimality theory, to yield predictions of spatio-temporal patterns in leaf traits that can be independently evaluated. Innovation Global patterns of community-mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf-level measurements and/or remote-sensing methods, which are an increasingly important source of information on spatio-temporal variation in plant traits. Main conclusions Model predictions evaluated against site-mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species-level Nmass, and increasing community-level SLA, have both been recently reported and were both correctly predicted. Leaf-trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf-trait responses to environmental change
    corecore