147 research outputs found

    Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Get PDF
    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233&thinsp;K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3&thinsp;µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66&thinsp;% prediction bands) region of the average fit to the data, which captures 75&thinsp;% of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60&thinsp;nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60&thinsp;nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.</p

    Wake Capture, Particle Breakup, and Other Artifacts Associated with Counterflow Virtual Impaction

    Get PDF
    Counterflow virtual impaction is used to inertially separate cloud elements from inactivated aerosol. Previous airborne, ground-based, and laboratory studies using this technique exhibit artifacts that are not fully explained by the impaction theory. We have performed laboratory studies that show small particles can be carried across the inertial barrier of the counterflow by collision and/or coalescence or riding the wake of larger particles with sufficient inertia. We have also performed theoretical calculations to show that aerodynamic forces associated with the requisite acceleration and deceleration of particles within a counterflow virtual impactor can lead to breakup. The implication of these processes on studies using this technique is discussed

    Ice Nucleation in Sulfuric Acid and Ammonium Sulfate Particles

    Get PDF
    Cirrus clouds are composed of ice particles and are expected to form in the upper troposphere when highly dilute sulfate aerosols cool and become supersaturated with respect to ice. In the laboratory we have used Fourier transform infrared spectroscopy to monitor ice nucleation from sulfate particles for relevant compositions of sulfuric acid/water and ammonium sulfate/water aerosols. Measured freezing temperatures are presented as a function of aerosol composition, and results are compared to existing aerosol data. We find that sulfuric acid solution aerosol exhibits greater supercooling than ammonium sulfate solution aerosol of similar weight percent. Ice saturation ratios based on these measurements are also reported. We find that ammonium sulfate solution aerosol exhibits a relatively constant ice saturation of S∼1.48 for ice nucleation from 232 to 222 K, while sulfuric acid solution aerosol shows an increase in ice saturation from S∼1.53 to S∼1.6 as temperature decreases from 220 K to 200 K. These high-saturation ratios imply selective nucleation of ice from sulfate aerosols

    A decadal satellite analysis of the origins and impacts of smoke in Colorado

    Get PDF
    We analyze the record of aerosol optical depth (AOD) measured by the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite in combination with surface PM[subscript 2.5] to investigate the impact of fires on aerosol loading and air quality over Colorado from 2000 to 2012, and to evaluate the contribution of local versus transported smoke. Fire smoke contributed significantly to the AOD levels observed over Colorado. During the worst fire seasons of 2002 and 2012, average MODIS AOD over the Colorado Front Range corridor were 20–50% larger than the other 11 yr studied. Surface PM[subscript 2.5] was also unusually elevated during fire events and concentrations were in many occasions above the daily National Ambient Air Quality Standard (35 μg m[superscript −3]) and even reached locally unhealthy levels (> 100 μg m[superscript −3]) over populated areas during the 2012 High Park fire and the 2002 Hayman fire. Over the 13 yr examined, long-range transport of smoke from northwestern US and even California (> 1500 km distance) occurred often and affected AOD and surface PM[subscript 2.5]. During most of the transport events, MODIS AOD and surface PM[subscript 2.5] were reasonable correlated (r[superscript 2] = 0.2–0.9), indicating that smoke subsided into the Colorado boundary layer and reached surface levels. However, that is not always the case since at least one event of AOD enhancement was disconnected from the surface (r[superscript 2]<0.01 and low PM[subscript 2.5] levels). Observed plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) satellite instrument and vertical aerosol profiles measured by the space-based Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) showed a complex vertical distribution of smoke emitted by the High Park fire in 2012. Smoke was detected from a range of 1.5 to 7.5 km altitude at the fire origin and from ground levels to 12.3 km altitude far away from the source. The variability of smoke altitude as well as the local meteorology were key in determining the aerosol loading and air quality over the Colorado Front Range region. Our results underline the importance of accurate characterization of the vertical distribution of smoke for estimating the air quality degradation associated with fire activity and its link to human health.United States. National Park Service (Grant H2370 094000/J2350103006

    Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts

    No full text
    International audienceA method is described that uses particle hygroscopicity measurements, made with a humidified tandem differential mobility analyzer (HTDMA), to determine solution water activity as a function of composition. The use of derived water activity data in computations determining the ability of aerosols to serve as cloud condensation nuclei (CCN) is explored. Results for sodium chloride and ammonium sulfate are shown in Part I. The methodology yields solution water activities and critical dry diameters for ammonium sulfate and sodium chloride in good agreement with previously published data. The approach avoids the assumptions required for application of simplified and modified Köhler equations to predict CCN activity, most importantly, knowledge of the molecular weight and the degree of dissociation of the soluble species. Predictions of the dependence of water activity on the mass fraction of aerosol species are sensitive to the assumed dry density, but predicted critical dry diameters are not

    Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud

    Get PDF
    The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case

    Water activity and activation diameters from hygroscopicity data - Part II: Application to organic species

    No full text
    International audienceA method has been developed for using particle hygroscopicity measurements made with a humidified tandem differential mobility analyzer (HTDMA) to determine water activity as a function of solute weight percent. In Part I, the method was tested for particles composed of sodium chloride and ammonium sulfate. Here, we report results for several atmospherically-relevant organic species: glutaric acid, malonic acid, oxalic acid and levoglucosan. Predicted water activities for aqueous dicarboxylic acid solutions are quite similar in some cases to published estimates and the simplified predictions of Köhler theory, while in other cases substantial differences are found, which we attribute primarily to the semivolatile nature of these compounds that makes them difficult to study with the HTDMA. In contrast, estimates of water activity for levoglucosan solutions compare very well with recently-reported measurements and with published data for aqueous glucose and fructose solutions. For all studied species, the critical dry diameters active at supersaturations between 0.2 and 1% that are computed with the HTDMA-derived water activities are generally within the experimental error (~20%) estimated in previously-published direct measurements using cloud condensation nuclei counters. For individual compounds, the variations in reported solution water activity lead to uncertainties in critical dry diameters of 5-25%, not significantly larger than the uncertainty in the direct measurements. To explore the impact of these uncertainties on modeled aerosol-cloud interactions, we incorporate the variations in estimates of solution water activities into the description of hygroscopic growth of aerosol particles in an adiabatic parcel model and examine the impact on the predicted drop number concentrations. For the limited set of initial conditions examined here, we find that the uncertainties in critical dry diameters for individual species lead to 0-21% changes in drop number concentration, with the largest effects at high aerosol number concentrations and slow updraft velocities. Ammonium sulfate, malonic acid and glutaric acid have similar activation behavior, while glutaric acid and levoglucosan are somewhat less hygroscopic and lead to lower drop number concentrations; sodium chloride is the most easily activated compound. We explain these behaviors in terms of a parameter that represents compound hygroscopicity, and conclude that this parameter must vary by more than a factor of 2 to induce more than a 15% change in activated drop number concentrations. In agreement with earlier studies, our results suggest that the number concentration of activated drops is more sensitive to changes in the input aerosol size and number concentrations and the applied updraft velocity than to modest changes in the aerosol composition and hygroscopic properties

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233&thinsp;K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3&thinsp;µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66&thinsp;% prediction bands) region of the average fit to the data, which captures 75&thinsp;% of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60&thinsp;nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60&thinsp;nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.</p

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60 nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.ISSN:1680-7375ISSN:1680-736
    corecore