20 research outputs found

    Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties

    Get PDF
    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens

    Beached bachelors: an extensive study on the largest recorded sperm whale <i>Physeter macrocephalus</i> mortality event in the North Sea

    Get PDF
    Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated

    Influenza A (H10N7) virus causes respiratory tract disease in harbor seals and ferrets

    Get PDF
    Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals and thus humans

    Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the North Sea

    Get PDF
    Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated

    Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the North Sea

    Get PDF
    Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated

    Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the North Sea

    Get PDF
    Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/ or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated
    corecore