1,935 research outputs found

    Observation of the Decay B^-→D_s^((*)+)K^-ℓ^-ν̅ _ℓ

    Get PDF
    We report the observation of the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ based on 342  fb^(-1) of data collected at the Υ(4S) resonance with the BABAR detector at the PEP-II e^+e^- storage rings at SLAC. A simultaneous fit to three D_s^+ decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B^- → D_s^((*)+)K^-ℓ^-ν̅ _ℓ)=[6.13_(-1.03)^(+1.04)(stat)±0.43(syst)±0.51(B(D_s))]×10^(-4), where the last error reflects the limited knowledge of the D_s branching fractions

    Lung segmentation and characterization in covid-19 patients for assessing pulmonary thromboembolism: An approach based on deep learning and radiomics

    Get PDF
    The COVID-19 pandemic is inevitably changing the world in a dramatic way, and the role of computed tomography (CT) scans can be pivotal for the prognosis of COVID-19 patients. Since the start of the pandemic, great care has been given to the relationship between interstitial pneumonia caused by the infection and the onset of thromboembolic phenomena. In this preliminary study, we collected n = 20 CT scans from the Polyclinic of Bari, all from patients positive with COVID-19, nine of which developed pulmonary thromboembolism (PTE). For eight CT scans, we obtained masks of the lesions caused by the infection, annotated by expert radiologists; whereas for the other four CT scans, we obtained masks of the lungs (including both healthy parenchyma and lesions). We developed a deep learning-based segmentation model that utilizes convolutional neural networks (CNNs) in order to accurately segment the lung and lesions. By considering the images from publicly available datasets, we also realized a training set composed of 32 CT scans and a validation set of 10 CT scans. The results obtained from the segmentation task are promising, allowing to reach a Dice coefficient higher than 97%, posing the basis for analysis concerning the assessment of PTE onset. We characterized the segmented region in order to individuate radiomic features that can be useful for the prognosis of PTE. Out of 919 extracted radiomic features, we found that 109 present different distributions according to the Mann–Whitney U test with corrected p-values less than 0.01. Lastly, nine uncorrelated features were retained that can be exploited to realize a prognostic signature

    Tendon-like Electrospun PLGA Scaffolds with Optimized Physical Cues Induced Tenogenic Differentiation and Boosted Immunomodulatory Properties on Amniotic Epithelial Stem Cells.

    Get PDF
    Introduction: The advanced strategies in the field of Tissue Engineering might render possible overcoming the unsatisfactory results of conventional treatments to deal with tendinopathies. In this context, the design of tendon biomimetic electrospun scaffolds engineered with Amniotic Epithelial Stem Cells (AECs), which have shown a high teno-regenerative and immunomodulatory potential in tendon-defect models, can represent a promising solution for tendon regeneration. Methods: Poly(lactide-co-glycolic) acid (PLGA) scaffolds were fabricated using the electrospinning technique to mimic the native tendon biomechanics and extracellular matrix by optimizing: fiber alignment and diameter size (1.27 and 2.5 µm), and surface chemistry using the Cold Atmospheric Plasma (CAP) Technique. Moreover, the teno-inductive and immunomodulatory effects of these parameters on AECs have been also assessed. Results: The fabricated PLGA scaffolds with highly aligned fibers and small diameter size (1.27 µm) induced a stepwise tenogenic differentiation on AECs with an early epithelial-mesenchymal transition (EMT), followed by their tenogenic differentiation. Indeed, SCX, an early tendon marker, was significantly more efficiently translated into the downstream effector TNMD, a mature tendon marker. Moreover, 1.27 µm fiber diameter induced on AECs a higher expression of anti-inflammatory interleukin mRNAs (IL-4 and IL-10). The CAP treated PLGA scaffolds showed an improved cell adhesion and infiltration without altering their topological structure and teno-inductive properties. In fact, AECs engineered with CAP treated fibers, expressed in their cytoplasm TNMD. Moreover, CAP treatment did not alter the mechanical properties of PLGA scaffolds. Conclusions: The developed electrospun PLGA scaffolds with the optimized features represent an ideal tendon-like construct that could be applied in in-vivo models to evaluate their biosafety and teno-regenerative potential

    Raman elastic geobarometry for anisotropic mineral inclusions

    Get PDF
    Elastic geobarometry for host-inclusion systems can provide new constraints to assess the pressure and temperature conditions attained during metamorphism. Current experimental approaches and theory are developed only for crystals immersed in a hydrostatic stress field, whereas inclusions experience deviatoric stress. We have developed a method to determine the strains in quartz inclusions from Raman spectroscopy using the concept of the phonon-mode Gr\ufcneisen tensor. We used ab initio Hartree-Fock/Density Functional Theory to calculate the wavenumbers of the Raman-active modes as a function of different strain conditions. Least-squares fits of the phonon-wavenumber shifts against strains have been used to obtain the components of the mode Gr\ufcneisen tensor of quartz (\u2060\u3b3m1 and \u3b3m3\u2060) that can be used to calculate the strains in inclusions directly from the measured Raman shifts. The concept is demonstrated with the example of a natural quartz inclusion in eclogitic garnet from Mir kimberlite and has been validated against direct X-ray diffraction measurement of the strains in the same inclusio

    Amniotic Epithelial Stem Cells Counteract Acidic Degradation By-Products of Electrospun PLGA Scaffold by Improving their Immunomodulatory Profile In Vitro

    Get PDF
    Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (ha-PLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing its replacement by a neo-formed native tendon tissue in a controlled manner. In this study, ha-PLGA were subjected to hydrolytic degradation up to 20 weeks, under di-H2 O and PBS conditions according to ISO 10993-13:2010. These were then characterized for their physical, morphological, and mechanical features. In vitro cytotoxicity tests were conducted on ovine amniotic epithelial stem cells (oAECs), up to 7 days, to assess the effect of non-buffered and buffered PLGA by-products at different concentrations on cell viability and their stimuli on oAECs’ immunomodulatory properties. The ha-PLGA scaffolds degraded slowly as evidenced by a slight decrease in mass loss (14%) and average molecular weight (35%), with estimated degradation half-time of about 40 weeks under di-H2 O. The ultrastructure morphology of the scaffolds showed no significant fiber degradation even after 20 weeks, but alteration of fiber alignment was already evident at week 1. Moreover, mechanical properties decreased throughout the degradation times under wet as well as dry PBS conditions. The influence of acid degradation media on oAECs was dose-dependent, with a considerable effect at 7 days’ culture point. This effect was notably reduced by using buffered media. To a certain level, cells were able to compensate the generated inflammation-like microenvironment by upregulating IL-10 gene expression and favoring an anti-inflammatory rather than pro-inflammatory response. These in vitro results are essential to better understand the degradation behavior of ha-PLGA in vivo and the effect of their degradation by-products on affecting cell performance. Indeed, buffering the degradation milieu could represent a promising strategy to balance scaffold degradation. These findings give good hope with reference to the in vivo condition characterized by physiological buffering systems

    Raman elastic geobarometry for anisotropic mineral inclusions

    Get PDF
    Elastic geobarometry for host-inclusion systems can provide new constraints to assess the pressure and temperature conditions attained during metamorphism. Current experimental approaches and theory are developed only for crystals immersed in a hydrostatic stress field, whereas inclusions experience deviatoric stress. We have developed a method to determine the strains in quartz inclusions from Raman spectroscopy using the concept of the phonon-mode GrĂĽneisen tensor. We used ab initio Hartree-Fock/Density Functional Theory to calculate the wavenumbers of the Raman-active modes as a function of different strain conditions. Least-squares fits of the phonon-wavenumber shifts against strains have been used to obtain the components of the mode GrĂĽneisen tensor of quartz (Îłm1 and Îłm3) that can be used to calculate the strains in inclusions directly from the measured Raman shifts. The concept is demonstrated with the example of a natural quartz inclusion in eclogitic garnet from Mir kimberlite and has been validated against direct X-ray diffraction measurement of the strains in the same inclusion

    Increased prevalence of impulse control disorder symptoms in endocrine diseases treated with dopamine agonists: a cross-sectional study

    Get PDF
    INTRODUCTION: Impulse control disorders (ICDs) have been described as a side effect of dopamine agonists (DAs) in neurological as well as endocrine conditions. Few studies have evaluated the neuropsychological effect of DAs in hyperprolactinemic patients, and these have reported a relationship between DAs and ICDs. Our objective was to screen for ICD symptoms in individuals with DA-treated endocrine conditions. MATERIALS AND METHODS: A cross-sectional analysis was conducted on 132 patients with pituitary disorders treated with DAs (DA exposed), as well as 58 patients with pituitary disorders and no history of DA exposure (non-DA exposed). Participants responded to the full version of the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s disease (QUIP). RESULTS: Compared with the non-DA-exposed group, a higher prevalence of DA-exposed patients tested positive for symptoms of any ICD or related behavior (52% vs. 31%, p < 0.01), any ICD (46% vs. 24%, p < 0.01), any related behavior (31% vs. 17%, p < 0.05), compulsive sexual behavior (27% vs. 14%, p < 0.04), and punding (20% vs. 7%, p < 0.02) by QUIP. On univariate analysis, DA treatment was associated with a two- to threefold increased risk of any ICD or related behavior [odds ratio (OR) 2.43] and any ICD (OR 2.70). In a multivariate analysis, independent risk factors for any ICD or related behavior were DA use (adjusted OR 2.22) and age (adjusted OR 6.76). Male gender was predictive of the risk of hypersexuality (adjusted OR 3.82). DISCUSSION: Despite the QUIP limitations, a clear sign of increased risk of ICDs emerges in individuals with DA-treated pituitary disorders. Our data contribute to the growing evidence of DA-induced ICDs in endocrine conditions

    Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals

    Full text link
    We discuss the adiabatic self-trapping of small polarons within the density functional theory (DFT). In particular, we carried out plane-wave pseudo-potential calculations of the triplet exciton in NaCl and found no energy minimum corresponding to the self-trapped exciton (STE) contrary to the experimental evidence and previous calculations. To explore the origin of this problem we modelled the self-trapped hole in NaCl using hybrid density functionals and an embedded cluster method. Calculations show that the stability of the self-trapped state of the hole drastically depends on the amount of the exact exchange in the density functional: at less than 30% of the Hartree-Fock exchange, only delocalized hole is stable, at 50% - both delocalized and self-trapped states are stable, while further increase of exact exchange results in only the self-trapped state being stable. We argue that the main contributions to the self-trapping energy such as the kinetic energy of the localizing charge, the chemical bond formation of the di-halogen quasi molecule, and the lattice polarization, are represented incorrectly within the Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl

    What is the prevalence of low health literacy in European Union member states? A systematic review and meta-analysis

    Get PDF
    Background: Many studies have shown that low health literacy (HL) is associated with several adverse outcomes. In this study, we systematically reviewed the prevalence of low HL in Europe. Methods: PubMed, Embase, and Scopus were searched. Cross-sectional studies conducted in the European Union (EU), published from 2000, investigating the prevalence of low HL in adults using a reliable tool, were included. Quality was assessed with the Newcastle-Ottawa Scale. Inverse-variance random effects methods were used to produce pooled prevalence estimates. A meta-regression analysis was performed to assess the association between low HL and the characteristics of the studies. Results: The pooled prevalence of low HL ranged from of 27% (95% CI: 18–38%) to 48% (95% CI: 41–55%), depending on the literacy assessment method applied. Southern, Western, and Eastern EU countries had lower HL compared to northern Europe (β: 0.87, 95% CI: 0.40–1.35; β: 0.59, 95% CI: 0.25–0.93; and β: 0.72, 95% CI: 0.06–1.37, respectively). The assessment method significantly influenced the pooled estimate: compared to word recognition items, using self-reported comprehensions items (β: 0.61, 95% CI: 0.15–1.08), reading or numeracy comprehensions items (β: 0.77, 95% CI: 0.24–1.31), or a mixed method (β: 0.66, 95% CI: 0.01–1.33) found higher rates of low HL. Refugees had the lowest HL (β: 1.59, 95% CI: 0.26–2.92). Finally, lower quality studies reported higher rates of low HL (β: 0.56, 95% CI: 0.06–1.07). Discussion: We found that low HL is a public health challenge throughout Europe, where one in every three to almost one in every two Europeans may not be able to understand essential health-related material. Additional research is needed to investigate the underlying causes and to develop remedies

    Tendon biomimetic 3D scaffold enhance amniotic epithelial stem cells biological potential

    Get PDF
    Tendon tissue engineering represents an emerging field whose aim focuses on the design of 3D tendon biomimetic scaffolds that should ideally combine adequate physical, mechanical, biological and functional properties of the native tissue. In this research, it was designed a bundle tendon-like PLGA 3D scaffold with highly aligned fibers on which the structure and mechanical properties were evaluated. Moreover, it was assessed scaffold’s teno-differentiative and immuno-inductive ability on amniotic epithelial stem cells (AECs). The fabricated PLGA 3D scaffolds mimic macroscopically and microscopically the structure of native tendon tissue and its biomechanical properties. Biologically, AECs seeded on the fabricated 3D scaffolds acquired a spindle tenocyte-like morphology after just 24h compared to the AECs cultured on petri dishes (CTR) which maintained their cobblestone morphology. The phenotypic change of the engineered AECs was also confirmed by visualizing TNMD protein expression, a mature tendon marker, within their cytoplasm and supported by the analysis of tendon-related genes (SCX, COL1, and TNMD) that were significantly upregulated at 7-day culture, while no TNMD protein expression or significant increase in tendon-related genes was found in CTR cells. Moreover, the 3D construct induced on AECs an upregulation of IL-10, an anti-inflammatory cytokine, maintaining basal levels of IL-12, a pro-inflammatory cytokine, showing a favorable IL10/IL12 ratio. In conclusion, the fabricated PLGA 3D scaffolds are tendon biomimetic in terms of ultrastructure and biomechanics, making them also suitable for surgical purposes. Moreover, these constructs revealed a high teno- and immuno-inductive potential on AECs and thus represent potential candidates for tendon regeneration
    • …
    corecore