13 research outputs found

    Further steps of hepatic stimulatory substance purification

    Get PDF
    The hepatic stimulatory substance (HSS) extracted from weanling rat livers was purified 381,000-fold using chromatographic techniques including nondissociating polyacrylamide gel electrophoresis (nondenaturing PAGE). The activity of this highly purified HSS, named Acr-F4, was assessed in two in vivo models. In 40% hepatectomized rats, it produced a fivefold increase in the proliferative rate normally seen following this partial hepatectomy. In Eck fistula dogs, the level of base increase in hepatocyte renewal was amplified threefold by an infusion of Acr-F4 (50 ng/kg/day). Acr-F4 had no influence on the regenerative response of the kidney following a unilateral nephrectomy or of the bowel following a 40% resection of the small bowel. On the basis of these findings, it can be concluded that HSS (Acr-F4) has a high biological activity and is organ specific. © 1991 Plenum Publishing Corporation

    Crystallization and preliminary crystallographic data for the augmenter of liver regeneration

    Get PDF
    A new cellular growth factor termed augmenter of liver regeneration (ALR) has been crystallized. ALR has been shown to have a proliferative effect on liver cells while at the same time producing an immunosuppressive effect on liver-resident natural killer cells and liver-resident mononuclear leukocytes. In addition, ALR appears to play an important role in the synthesis and stabilization of mitochondrial gene transcripts inactively regenerating cells. ALR crystals diffract to beyond 2 Å resolution and belong to space group P21212, with a = 125.1, b = 108.1 and c = 38.5 Å. Based on four molecules per asymmetric unit, the Matthews coefficient is calculated to be 2.16 Å3 Da-1 which corresponds to a solvent content of 43%

    Hepatocyte proliferation and gene expression induced by triiodothyronine in vivo and in vitro

    Get PDF
    Subcutaneous injections of hormone triiodothyronine in rats resulted in peak blood levels at 24 hr with return to baseline by 96 hr. The injections stimulated a liver regeneration response that resembled in timing and in magnitude of DNA synthesis (peak, 24 hr) that induced by 40% hepatic resection. The principal proliferation was of hepatocytes. Although there were some temporal differences from the gene expression of transforming growth factor‐α, transforming growth factor‐β, and c‐Ha‐ras that are known to follow partial hepatectomy, the overall profile of these changes was similar to those after partial resection. The effect was liver specific and could be reproduced three times with no diminution in response in the same animal with injections at 10‐day intervals. No response was detected in kidney or intestine. This effect in intact animals contrasted with the minimal ability of triiodothyronine to stimulate hepatocytes in culture. However, when the culture medium was enriched with epidermal growth factor, there was a dose‐related response to triiodothyronine. The totality of these experiments provides a preliminary basis for the creation with pharmacological techniques of an in vivo hyperplastic hepatic condition permissive of transfection of new genes, as an alternative to partial hepatectomy. Although triiodothyronine was the test agent used, other hepatic growth factors singly or in combination could be candidates for this purpose. (Hepatology 1994;20:1237–1241). Copyright © 1994 American Association for the Study of Liver Disease
    corecore