80 research outputs found

    Editorial: Modulation of human immune parameters by anticancer therapies

    Get PDF
    Contains fulltext : 229590.pdf (publisher's version ) (Open Access

    CD4 deficiency in myelodysplastic syndrome with monosomy 7

    Get PDF

    In silico evaluation of limited sampling strategies for individualized dosing of extended half-life factor IX concentrates in hemophilia B patients

    Get PDF
    PURPOSE: Hemophilia B is a bleeding disorder, caused by a factor IX (FIX) deficiency. Recently, FIX concentrates with extended half-life (EHL) have become available. Prophylactic dosing of EHL-FIX concentrates can be optimized by assessment of individual pharmacokinetic (PK) parameters. To determine these parameters, limited sampling strategies (LSSs) may be applied. The study aims to establish adequate LSSs for estimating individual PK parameters of EHL-FIX concentrates using in silico evaluation. METHODS: Monte Carlo simulations were performed to obtain FIX activity versus time profiles using published population PK models for N9-GP (Refixia), rFIXFc (Alprolix), and rIX-FP (Idelvion). Fourteen LSSs, containing three or four samples taken within 8 days after administration, were formulated. Bayesian analysis was applied to obtain estimates for clearance (CL), half-life (t(1/2)), time to 1% (Time(1%)), and calculated weekly dose (Dose(1%)). Bias and precision of these estimates were assessed to determine which LSS was adequate. RESULTS: For all PK parameters of N9-GP, rFIXFc and rIX-FP bias was generally acceptable (range: −5% to 5%). For N9-GP, precision of all parameters for all LSSs was acceptable (< 25%). For rFIXFc, precision was acceptable for CL and Time(1%), except for t(1/2) (range: 27.1% to 44.7%) and Dose(1%) (range: 12% to 29.4%). For rIX-FP, all LSSs showed acceptable bias and precision, except for Dose(1%) using LSS with the last sample taken on day 3 (LSS 6 and 10). CONCLUSION: Best performing LSSs were LSS with samples taken at days 1, 5, 7, and 8 (N9-GP and rFIXFc) and at days 1, 4, 6, and 8 (rIX-FP), respectively

    A Pooled Population Pharmacokinetic Study of Oral and Intravenous Administration of Clavulanic Acid in Neonates and Infants:Targeting Effective Beta-Lactamase Inhibition

    Get PDF
    Data published on the oral clavulanic acid pharmacokinetics in the pediatric population is lacking. This research aimed to describe clavulanic acid disposition following oral and intravenous administration and to provide insights into clavulanic acid exposure based on threshold concentrations for (pre-)term neonates and infants. This pooled population pharmacokinetic study combined four datasets for analysis in NONMEM v7.4.3. Clavulanic acid exposure was simulated using the percentage of time above the threshold concentrations (%fT &gt; C T). Multiple dosage regimens and amoxicillin/clavulanic acid dosage ratios were evaluated. The cohort consisted of 89 (42 oral, 47 intravenous) subjects (403 samples) with a median (range) postnatal age 54.5 days (0–365), gestational age 37.4 weeks (23.0–41.7), and current bodyweight 3.9 kg (0.6–9.0). A one-compartment model with first-order absorption best described clavulanic acid pharmacokinetics with postnatal age as a covariate on the inter-individual variability of clearance. Oral bioavailability was 24.4% in neonates up to 10 days of age. An oral dosing regimen 90 mg/kg/day amoxicillin/clavulanic acid (4:1 ratio) resulted in 40.2% of simulated patients achieving 100% fT &gt; C T,2mg/L. An amoxicillin/clavulanic acid ratio of 4:1 is preferred for neonatal oral regimens due to the higher exposure along the entire %fT &gt; C T range (0–100%) as ratios higher than 4:1 might result in inadequate exposure. Our results highlight substantial exposure differences (%fT &gt; C T) when using threshold concentrations of 1 mg/L vs. 2 mg/L. This first population pharmacokinetic model for clavulanic acid in neonates may serve as a foundational step for future research, once more precise clavulanic acid targets become available.</p

    Oral and Intravenous Amoxicillin Dosing Recommendations in Neonates:A Pooled Population Pharmacokinetic Study

    Get PDF
    BACKGROUND: There is a lack of evidence on oral amoxicillin pharmacokinetics and exposure in neonates with possible serious bacterial infection (pSBI). We aimed to describe amoxicillin disposition following oral and intravenous administration and to provide dosing recommendations for preterm and term neonates treated for pSBI.METHODS: In this pooled-population pharmacokinetic study, 3 datasets were combined for nonlinear mixed-effects modeling. In order to evaluate amoxicillin exposure following oral and intravenous administration, pharmacokinetic profiles for different dosing regimens were simulated with the developed population pharmacokinetic model. A target of 50% time of the free fraction above the minimal inhibitory concentration (MIC) with an MICECOFF of 8 mg/L (to cover gram-negative bacteria such as Escherichia coli) was used.RESULTS: The cohort consisted of 261 (79 oral, 182 intravenous) neonates with a median (range) gestational age of 35.8 weeks (range, 24.9-42.4) and bodyweight of 2.6 kg (range, 0.5-5). A 1-compartment model with first-order absorption best described amoxicillin pharmacokinetics. Clearance (L/h/kg) in neonates born after 30 weeks' gestation increased with increasing postnatal age (PNA day 10, 1.25-fold; PNA day 20, 1.43-fold vs PNA day 3). Oral bioavailability was 87%. We found that a twice-daily regimen of 50 mg/kg/day is superior to a 3- or 4-times daily schedule in the first week of life for both oral and intravenous administration.CONCLUSIONS: This pooledpopulation pharmacokinetic description of intravenous and oral amoxicillin in neonates provides age-specific dosing recommendations. We conclude that neonates treated with oral amoxicillin in the first weeks of life reach adequate amoxicillin levels following a twice-daily dosing regimen. Oral amoxicillin therapy could therefore be an adequate, cost-effective, and more patient-friendly alternative for neonates worldwide.</p

    A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients

    Get PDF
    Contains fulltext : 87604.pdf (publisher's version ) (Closed access)BACKGROUND: Dendritic cell (DC) vaccination has been shown to induce anti-tumour immune responses in cancer patients, but so far its clinical efficacy is limited. Recent evidence supports an immunogenic effect of cytotoxic chemotherapy. Pre-clinical data indicate that the combination of chemotherapy and immunotherapy may result in an enhanced anti-cancer activity. Most studies have focused on the immunogenic aspect of chemotherapy-induced cell death, but only few studies have investigated the effect of chemotherapeutic agents on the effector lymphocytes of the immune system. METHODS: Here we investigated the effect of treatment with oxaliplatin and capecitabine on non-specific and specific DC vaccine-induced adaptive immune responses. Stage III colon cancer patients receiving standard adjuvant oxaliplatin/capecitabine chemotherapy were vaccinated at the same time with keyhole limpet haemocyanin (KLH) and carcinoembryonic antigen (CEA)-peptide pulsed DCs. RESULTS: In 4 out of 7 patients, functional CEA-specific T-cell responses were found at delayed type hypersensitivity (DTH) skin testing. In addition, we observed an enhanced non-specific T-cell reactivity upon oxaliplatin administration. KLH-specific T-cell responses remained unaffected by the chemotherapy, whereas B-cell responses were diminished. CONCLUSION: The results strongly support further testing of the combined use of specific anti-tumour vaccination with oxaliplatin-based chemotherapy

    Defining Early Human NK Cell Developmental Stages in Primary and Secondary Lymphoid Tissues

    Get PDF
    A better understanding of human NK cell development in vivo is crucial to exploit NK cells for immunotherapy. Here, we identified seven distinctive NK cell developmental stages in bone marrow of single donors using 10-color flow cytometry and found that NK cell development is accompanied by early expression of stimulatory co-receptor CD244 in vivo. Further analysis of cord blood (CB), peripheral blood (PB), inguinal lymph node (inLN), liver lymph node (liLN) and spleen (SPL) samples showed diverse distributions of the NK cell developmental stages. In addition, distinctive expression profiles of early development marker CD33 and C-type lectin receptor NKG2A between the tissues, suggest that differential NK cell differentiation may take place at different anatomical locations. Differential expression of NKG2A and stimulatory receptors (e.g. NCR, NKG2D) within the different subsets of committed NK cells demonstrated the heterogeneity of the CD56brightCD16+/− and CD56dimCD16+ subsets within the different compartments and suggests that microenvironment may play a role in differential in situ development of the NK cell receptor repertoire of committed NK cells. Overall, differential in situ NK cell development and trafficking towards multiple tissues may give rise to a broad spectrum of mature NK cell subsets found within the human body

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore