12 research outputs found

    Evolving Genital Structures: A Deep Look at Network Co-option

    Get PDF
    Novel body structures are often generated by the redeployment of ancestral components of the genome. In this issue of Developmental Cell, Glassford et al. (2015) present a thorough analysis of the co-option of a gene regulatory network in the origin of an evolutionary novelty.Fil: Preger-Ben Noon, Ella. Howard Hughes Medical Institute; Estados UnidosFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    A complex gene regulatory architecture underlies the development and evolution of cuticle morphology in Drosophila

    No full text
    The cuticle of insects is decorated with non-sensory hairs called trichomes. A few Drosophila species independently lost most of the dorso-lateral trichomes on first instar larvae. Genetic experiments revealed that this naked cuticle phenotype was caused by the evolution of enhancer function at the ovo/shavenbaby (ovo/svb) locus. Here we explore how this discovery catalyzed major new insights into morphological evolution in different developmental contexts, enhancer pleiotropy in gene regulation and the functionality and evolution of the Svb gene regulatory network (GRN). Taken together this highlights the importance of understanding the architecture and evolution of gene regulatory networks in detail and the great potential for further study of the Svb GRN.Fil: Kittelmann, Sebastian. Oxford Brookes University; Reino UnidoFil: Preger Ben Noon, Ella. No especifíca;Fil: McGregor, Alistair P.. Oxford Brookes University; Reino UnidoFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity

    No full text
    The current paradigm in the field of gene regulation postulates that regulatory information for generating gene expression is organized into modules (enhancers), each containing the information for driving gene expression in a single spatiotemporal context. This modular organization is thought to facilitate the evolution of gene expression by minimizing pleiotropic effects. Here we review recent studies that provide evidence of quite the opposite: (i) enhancers can function in multiple developmental contexts, implying that enhancers can be pleiotropic, (ii) transcription factor binding sites within pleiotropic enhancers are reused in different contexts, and (iii) pleiotropy impacts the structure and evolution of enhancers. Altogether, this evidence suggests that enhancer pleiotropy is pervasive in animal genomes, challenging the commonly held view of modularity.Fil: Sabarís Di Lorenzo, Gonzalo Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Laiker, Ian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Preger Ben Noon, Ella. The Ruth And Bruce Rappaport Faculty Of Medicine; IsraelFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    A developmental atlas of male terminalia across twelve species of Drosophila

    Get PDF
    How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom—the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development

    Comprehensive Analysis of a cis-Regulatory Region Reveals Pleiotropy in Enhancer Function

    Get PDF
    Summary: Developmental genes can have complex cis-regulatory regions with multiple enhancers. Early work revealed remarkable modularity of enhancers, whereby distinct DNA regions drive gene expression in defined spatiotemporal domains. Nevertheless, a few reports have shown that enhancers function in multiple developmental stages, implying that enhancers can be pleiotropic. Here, we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive expression in multiple tissues and developmental stages. We explored how enhancer pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, revealing site pleiotropy, whereas for a second enhancer, these roles are encoded by distinct sites. Enhancer pleiotropy may be a common feature of cis-regulatory regions of developmental genes, and site pleiotropy may constrain enhancer evolution in some cases. : Preger-Ben Noon et al. find that shavenbaby gene enhancers contain regulatory information for driving several expression patterns (i.e., enhancers are pleiotropic) and that, in some cases, the transcription factor binding sites that activate these enhancers are reused during development. Keywords: enhancer, pleitropy, gene regulation, shavenbaby, Drosophil

    Table2_A developmental atlas of male terminalia across twelve species of Drosophila.XLSX

    No full text
    How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom—the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.</p

    Image2_A developmental atlas of male terminalia across twelve species of Drosophila.TIF

    No full text
    How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom—the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.</p

    Image1_A developmental atlas of male terminalia across twelve species of Drosophila.TIF

    No full text
    How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom—the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.</p
    corecore