140 research outputs found
Crosstalk and the Dynamical Modularity of Feed-Forward Loops in Transcriptional Regulatory Networks
Network motifs, such as the feed-forward loop (FFL), introduce a range of complex behaviors to transcriptional regulatory networks, yet such properties are typically determined from their isolated study. We characterize the effects of crosstalk on FFL dynamics by modeling the cross regulation between two different FFLs and evaluate the extent to which these patterns occur in vivo. Analytical modeling suggests that crosstalk should overwhelmingly affect individual protein-expression dynamics. Counter to this expectation we find that entire FFLs are more likely than expected to resist the effects of crosstalk (approximate to 20% for one crosstalk interaction) and remain dynamically modular. The likelihood that cross-linked FFLs are dynamically correlated increases monotonically with additional crosstalk, but is independent of the specific regulation type or connectivity of the interactions. Just one additional regulatory interaction is sufficient to drive the FFL dynamics to a statistically different state. Despite the potential for modularity between sparsely connected network motifs, Escherichia coli (E. coli) appears to favor crosstalk wherein at least one of the cross-linked FFLs remains modular. A gene ontology analysis reveals that stress response processes are significantly overrepresented in the cross-linked motifs found within E. coli. Although the daunting complexity of biological networks affects the dynamical properties of individual network motifs, some resist and remain modular, seemingly insulated from extrinsic perturbations-an intriguing possibility for nature to consistently and reliably provide certain network functionalities wherever the need arise
Dynamics of Protofibril Elongation and Association Involved in Aβ42 peptide Aggregation in Alzheimer\u27s Disease
Background: The aggregates of a protein called, ‘Aβ’ found in brains of Alzheimer’s patients are strongly believed to be the cause for neuronal death and cognitive decline. Among the different forms of Aβ aggregates, smaller aggregates called ‘soluble oligomers’ are increasingly believed to be the primary neurotoxic species responsible for early synaptic dysfunction. Since it is well known that the Aβ aggregation is a nucleation dependant process, it is widely believed that the toxic oligomers are intermediates to fibril formation, or what we call the ‘on-pathway’ products. Modeling of Aβ aggregation has been of intense investigation during the last decade. However, precise understanding of the process, pre-nucleation events in particular, are not yet known. Most of these models are based on curve-fitting and overlook the molecular-level biophysics involved in the aggregation pathway. Hence, such models are not reusable, and fail to predict the system dynamics in the presence of other competing pathways.
Results: In this paper, we present a molecular-level simulation model for understanding the dynamics of the amyloid-β (Aβ) peptide aggregation process involved in Alzheimer’s disease (AD). The proposed chemical kinetic theory based approach is generic and can model most nucleation-dependent protein aggregation systems that cause a variety of neurodegenerative diseases. We discuss the challenges in estimating all the rate constants involved in the aggregation process towards fibril formation and propose a divide and conquer strategy by dissecting the pathway into three biophysically distinct stages: 1) pre-nucleation stage 2) post-nucleation stage and 3) protofibril elongation stage. We next focus on estimating the rate constants involved in the protofibril elongation stages for Aβ42 supported by in vitro experimental data. This elongation stage is further characterized by elongation due to oligomer additions and lateral association of protofibrils (13) and to properly validate the rate constants involved in these phases we have presented three distinct reaction models. We also present a novel scheme for mapping the fluorescence sensitivity and dynamic light scattering based in vitro experimental plots to estimates of concentration variation with time. Finally, we discuss how these rate constants will be incorporated into the overall simulation of the aggregation process to identify the parameters involved in the complete Aβ pathway in a bid to understand its dynamics.
Conclusions: We have presented an instance of the top-down modeling paradigm where the biophysical system is approximated by a set of reactions for each of the stages that have been modeled. In this paper, we have only reported the kinetic rate constants of the fibril elongation stage that were validated by in vitro biophysical analyses. The kinetic parameters reported in the paper should be at least accurate upto the first two decimal places of the estimate. We sincerely believe that our top-down models and kinetic parameters will be able to accurately model the biophysical phenomenon of Aβ protein aggregation and identify the nucleation mass and rate constants of all the stages involved in the pathway. Our model is also reusable and will serve as the basis for making computational predictions on the system dynamics with the incorporation of other competing pathways introduced by lipids and fatty acids
First-passage time analysis of a one-dimensional diffusion-reaction model: application to protein transport along DNA
<p>Abstract</p> <p>Background</p> <p>Proteins search along the DNA for targets, such as transcription initiation sequences, according to one-dimensional diffusion, which is interrupted by micro- and macro-hopping events and intersegmental transfers that occur under close packing conditions.</p> <p>Results</p> <p>A one-dimensional diffusion-reaction model in the form of difference-differential equations is proposed to analyze the nonequilibrium protein sliding kinetics along a segment of bacterial DNA. A renormalization approach is used to derive an expression for the mean first-passage time to arrive at sites downstream of the origin from the occupation probabilities given by the individual transport equations. Monte Carlo simulations are employed to assess the validity of the proposed approach, and all results are interpreted within the context of bacterial transcription.</p> <p>Conclusions</p> <p>Mean first-passage times decrease with increasing reaction rates, indicating that, on average, surviving proteins more rapidly locate downstream targets than their reaction-free counterparts, but at the price of increasing rarity. Two qualitatively different screening regimes are identified according to whether the search process operates under “small” or “large” values for the dissociation rate of the protein-DNA complex. Lower bounds are placed on the overall search time for varying reactive conditions. Good agreement with experimental estimates requires the reaction rate reside near the transition between both screening regimes, suggesting that biology balances a need for rapid searches against maximum exploration during each round of the sliding phase.</p
Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system
<p>Abstract</p> <p>Background</p> <p>The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system.</p> <p>Results</p> <p>In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular <it>Mg</it><sup>2+</sup> concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the <it>Mg</it><sup>2+</sup> departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system.</p> <p>Conclusions</p> <p>Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.</p
Dynamics of Protofibril Elongation and Association Involved in Aβ42 peptide Aggregation in Alzheimer\u27s Disease
Background: The aggregates of a protein called, ‘Aβ’ found in brains of Alzheimer’s patients are strongly believed to be the cause for neuronal death and cognitive decline. Among the different forms of Aβ aggregates, smaller aggregates called ‘soluble oligomers’ are increasingly believed to be the primary neurotoxic species responsible for early synaptic dysfunction. Since it is well known that the Aβ aggregation is a nucleation dependant process, it is widely believed that the toxic oligomers are intermediates to fibril formation, or what we call the ‘on-pathway’ products. Modeling of Aβ aggregation has been of intense investigation during the last decade. However, precise understanding of the process, pre-nucleation events in particular, are not yet known. Most of these models are based on curve-fitting and overlook the molecular-level biophysics involved in the aggregation pathway. Hence, such models are not reusable, and fail to predict the system dynamics in the presence of other competing pathways.
Results: In this paper, we present a molecular-level simulation model for understanding the dynamics of the amyloid-β (Aβ) peptide aggregation process involved in Alzheimer’s disease (AD). The proposed chemical kinetic theory based approach is generic and can model most nucleation-dependent protein aggregation systems that cause a variety of neurodegenerative diseases. We discuss the challenges in estimating all the rate constants involved in the aggregation process towards fibril formation and propose a divide and conquer strategy by dissecting the pathway into three biophysically distinct stages: 1) pre-nucleation stage 2) post-nucleation stage and 3) protofibril elongation stage. We next focus on estimating the rate constants involved in the protofibril elongation stages for Aβ42 supported by in vitro experimental data. This elongation stage is further characterized by elongation due to oligomer additions and lateral association of protofibrils (13) and to properly validate the rate constants involved in these phases we have presented three distinct reaction models. We also present a novel scheme for mapping the fluorescence sensitivity and dynamic light scattering based in vitro experimental plots to estimates of concentration variation with time. Finally, we discuss how these rate constants will be incorporated into the overall simulation of the aggregation process to identify the parameters involved in the complete Aβ pathway in a bid to understand its dynamics.
Conclusions: We have presented an instance of the top-down modeling paradigm where the biophysical system is approximated by a set of reactions for each of the stages that have been modeled. In this paper, we have only reported the kinetic rate constants of the fibril elongation stage that were validated by in vitro biophysical analyses. The kinetic parameters reported in the paper should be at least accurate upto the first two decimal places of the estimate. We sincerely believe that our top-down models and kinetic parameters will be able to accurately model the biophysical phenomenon of Aβ protein aggregation and identify the nucleation mass and rate constants of all the stages involved in the pathway. Our model is also reusable and will serve as the basis for making computational predictions on the system dynamics with the incorporation of other competing pathways introduced by lipids and fatty acids
Motifs Enable Communication Efficiency and Fault-Tolerance in Transcriptional Networks
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets
Make It Real - Undergraduate Research Opportunities
Theme one in the Quest for Distinction is for VCU to become a leader among national research universities in providing all students with high quality learning/living experiences focused on inquiry, discovery, and innovation in a global environment. Quest is grounded in a commitment to providing students with a diversity of experiences which are available at a premiere public research university. The goal of this project is to take advantage of the wealth of research resources at the Medical College of Virginia Campus, coordinate cross campus efforts to facilitate the use of these resources and increase faculty participation in mentoring undergraduate research projects
A Modified Stokes-Einstein Equation for A Beta Aggregation
Background: In all amyloid diseases, protein aggregates have been implicated fully or partly, in the etiology of the disease. Due to their significance in human pathologies, there have been unprecedented efforts towards physiochemical understanding of aggregation and amyloid formation over the last two decades. An important relation from which hydrodynamic radii of the aggregate is routinely measured is the classic Stokes-Einstein equation. Here, we report a modification in the classical Stokes-Einstein equation using a mixture theory approach, in order to accommodate the changes in viscosity of the solvent due to the changes in solute size and shape, to implement a more realistic model for A beta aggregation involved in Alzheimer\u27s disease. Specifically, we have focused on validating this model in protofibrill lateral association reactions along the aggregation pathway, which has been experimentally well characterized. Results: The modified Stokes-Einstein equation incorporates an effective viscosity for the mixture consisting of the macromolecules and solvent where the lateral association reaction occurs. This effective viscosity is modeled as a function of the volume fractions of the different species of molecules. The novelty of our model is that in addition to the volume fractions, it incorporates previously published reports on the dimensions of the protofibrils and their aggregates to formulate a more appropriate shape rather than mere spheres. The net result is that the diffusion coefficient which is inversely proportional to the viscosity of the system is now dependent on the concentration of the different molecules as well as their proper shapes. Comparison with experiments for variations in diffusion coefficients over time reveals very similar trends. Conclusions: We argue that the standard Stokes-Einstein\u27s equation is insufficient to understand the temporal variations in diffusion when trying to understand the aggregation behavior of A beta 42 proteins. Our modifications also involve inclusion of improved shape factors of molecules and more appropriate viscosities. The modification we are reporting is not only useful in A beta aggregation but also will be important for accurate measurements in all protein aggregation systems
A modified Stokes-Einstein equation for Aβ aggregation
<p>Abstract</p> <p>Background</p> <p>In all amyloid diseases, protein aggregates have been implicated fully or partly, in the etiology of the disease. Due to their significance in human pathologies, there have been unprecedented efforts towards physiochemical understanding of aggregation and amyloid formation over the last two decades. An important relation from which hydrodynamic radii of the aggregate is routinely measured is the classic Stokes-Einstein equation. Here, we report a modification in the classical Stokes-Einstein equation using a mixture theory approach, in order to accommodate the changes in viscosity of the solvent due to the changes in solute size and shape, to implement a more realistic model for A<it>β</it> aggregation involved in Alzheimer’s disease. Specifically, we have focused on validating this model in protofibrill lateral association reactions along the aggregation pathway, which has been experimentally well characterized.</p> <p>Results</p> <p>The modified Stokes-Einstein equation incorporates an effective viscosity for the mixture consisting of the macromolecules and solvent where the lateral association reaction occurs. This effective viscosity is modeled as a function of the volume fractions of the different species of molecules. The novelty of our model is that in addition to the volume fractions, it incorporates previously published reports on the dimensions of the protofibrils and their aggregates to formulate a more appropriate shape rather than mere spheres. The net result is that the diffusion coefficient which is inversely proportional to the viscosity of the system is now dependent on the concentration of the different molecules as well as their proper shapes. Comparison with experiments for variations in diffusion coefficients over time reveals very similar trends.</p> <p>Conclusions</p> <p>We argue that the standard Stokes-Einstein’s equation is insufficient to understand the temporal variations in diffusion when trying to understand the aggregation behavior of A<it>β</it>42 proteins. Our modifications also involve inclusion of improved shape factors of molecules and more appropriate viscosities. The modification we are reporting is not only useful in A<it>β</it> aggregation but also will be important for accurate measurements in all protein aggregation systems.</p
- …