90 research outputs found
Follicular dendritic cell differentiation is associated with distinct synovial pathotype signatures in rheumatoid arthritis
Follicular dendritic cells (FDCs) fundamentally contribute to the formation of synovial ectopic lymphoid-like structures in rheumatoid arthritis (RA) which is associated with poor clinical prognosis. Despite this critical role, regulation of FDC development in the RA synovium and its correlation with synovial pathotype differentiation remained largely unknown. Here, we demonstrate that CNA.42(+) FDCs distinctively express the pericyte/fibroblast-associated markers PDGFR-ÎČ, NG2, and Thy-1 in the synovial perivascular space but not in established follicles. In addition, synovial RNA-Seq analysis revealed that expression of the perivascular FDC markers was strongly correlated with PDGF-BB and fibroid synovitis, whereas TNF-α/LT-ÎČ was significantly associated with lymphoid synovitis and expression of CR1, CR2, and FcÎłRIIB characteristic of mature FDCs in lymphoid follicles. Moreover, PDGF-BB induced CNA.42(+) FDC differentiation and CXCL13 secretion from NG2(+) synovial pericytes, and together with TNF-α/LT-ÎČ conversely regulated early and late FDC differentiation genes in unsorted RA synovial fibroblasts (RASF) and this was confirmed in flow sorted stromal cell subsets. Furthermore, RASF TNF-αR expression was upregulated by TNF-α/LT-ÎČ and PDGF-BB; and TNF-α/LT-ÎČ-activated RASF retained ICs and induced B cell activation in in vitro germinal center reactions typical of FDCs. Additionally, FDCs trapped peptidyl citrulline, and strongly correlated with IL-6 expression, and plasma cell, B cell, and T cell infiltration of the RA synovium. Moreover, synovial FDCs were significantly associated with RA disease activity and radiographic features of tissue damage. To the best of our knowledge, this is the first report describing the reciprocal interaction between PDGF-BB and TNF-α/LT-ÎČ in synovial FDC development and evolution of RA histological pathotypes. Selective targeting of this interplay could inhibit FDC differentiation and potentially ameliorate RA in clinically severe and drug-resistant patients
Axl and MerTK regulate synovial inflammation and are modulated by IL-6 inhibition in rheumatoid arthritis.
The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment
Accelerated hypofractionated radiotherapy as adjuvant regimen after conserving surgery for early breast cancer: interim report of toxicity after a minimum follow up of 3 years
<p>Abstract</p> <p>Background</p> <p>Accelerated hypofractionation is an attractive approach for adjuvant whole breast radiotherapy. In this study we evaluated the adverse effects at least 3 years post an accelerated hypofractionated whole breast radiotherapy schedule.</p> <p>Methods</p> <p>From October 2004 to March 2006, 39 consecutive patients aged over 18 years with pTis, pT1-2, pN0-1 breast adenocarcinoma who underwent conservative surgery were treated with an adjuvant accelerated hypofractionated radiotherapy schedule consisting of 34 Gy in 10 daily fractions over 2 weeks to the whole breast, followed after 1 week by an electron boost dose of 8 Gy in a single fraction to the tumour bed. Skin and lung radiation toxicity was evaluated daily during therapy, once a week for one month after radiotherapy completion, every 3 months for the first year and from then on every six months. In particular lung toxicity was investigated in terms of CT density evaluation, pulmonary functional tests, and clinical and radiological scoring. Paired t-test, Chi-square test and non-parametric Wilcoxon test were performed.</p> <p>Results</p> <p>After a median follow-up of 43 months (range 36-52 months), all the patients are alive and disease-free. None of the patients showed any clinical signs of lung toxicity, no CT-lung toxicity was denoted by radiologist on CT lung images acquired about 1 year post-radiotherapy, no variation of pulmonary density evaluated in terms of normalised Hounsfield numbers was evident. Barely palpable increased density of the treated breast was noted in 9 out of 39 patients (in 2 patients this toxicity was limited to the boost area) and teleangectasia (<1/cm<sup>2</sup>) limited to the boost area was evident in 2 out of 39 patients. The compliance with the treatment was excellent (100%).</p> <p>Conclusion</p> <p>The radiotherapy schedule investigated in this study (i.e 34 Gy in 3.4 Gy/fr plus boost dose of 8 Gy in single fraction) is a feasible and safe treatment and does not lead to adjunctive acute and late toxicities. A longer follow up is necessary to confirm these favourable results.</p
Recommended from our members
Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial
Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5â20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n = 164), patients with low/absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocilizumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatmentâresponse phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients
Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 r4ra randomized trial
Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5â20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; nâ=â164), patients with low/absent synovial Bâcell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC)â=â0.74), tocilizumab (AUCâ=â0.68) and, notably, multidrug resistance (AUCâ=â0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatmentâresponse phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients
Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry
Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase
- âŠ