251 research outputs found

    Numerical implementation of some reweighted path integral methods

    Full text link
    The reweighted random series techniques provide finite-dimensional approximations to the quantum density matrix of a physical system that have fast asymptotic convergence. We study two special reweighted techniques that are based upon the Levy-Ciesielski and Wiener-Fourier series, respectively. In agreement with the theoretical predictions, we demonstrate by numerical examples that the asymptotic convergence of the two reweighted methods is cubic for smooth enough potentials. For each reweighted technique, we propose some minimalist quadrature techniques for the computation of the path averages. These quadrature techniques are designed to preserve the asymptotic convergence of the original methods.Comment: 15 pages, 10 figures, submitted to JC

    Energy estimators for random series path-integral methods

    Get PDF
    We perform a thorough analysis on the choice of estimators for random series path integral methods. In particular, we show that both the thermodynamic (T-method) and the direct (H-method) energy estimators have finite variances and are straightforward to implement. It is demonstrated that the agreement between the T-method and the H-method estimators provides an important consistency check on the quality of the path integral simulations. We illustrate the behavior of the various estimators by computing the total, kinetic, and potential energies of a molecular hydrogen cluster using three different path integral techniques. Statistical tests are employed to validate the sampling strategy adopted as well as to measure the performance of the parallel random number generator utilized in the Monte Carlo simulation. Some issues raised by previous simulations of the hydrogen cluster are clarified.Comment: 15 pages, 1 figure, 3 table

    Heat capacity estimators for random series path-integral methods by finite-difference schemes

    Get PDF
    Previous heat capacity estimators used in path integral simulations either have large variances that grow to infinity with the number of path variables or require the evaluation of first and second order derivatives of the potential. In the present paper, we show that the evaluation of the total energy by the T-method estimator and of the heat capacity by the TT-method estimator can be implemented by a finite difference scheme in a stable fashion. As such, the variances of the resulting estimators are finite and the evaluation of the estimators requires the potential function only. By comparison with the task of computing the partition function, the evaluation of the estimators requires k + 1 times more calls to the potential, where k is the order of the difference scheme employed. Quantum Monte Carlo simulations for the Ne_13 cluster demonstrate that a second order central-difference scheme should suffice for most applications.Comment: 11 pages, 4 figure

    Reconstruction of thermally-symmetrized quantum autocorrelation functions from imaginary-time data

    Full text link
    In this paper, I propose a technique for recovering quantum dynamical information from imaginary-time data via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorrelation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique is advocated as especially effective for a certain class of quantum problems in continuum space, for which only a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables. Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the quantum rate of reaction for a one-dimensional symmetric Eckart barrier.Comment: 15 pages, no figures, to appear in Phys. Rev.

    Phase changes in selected Lennard-Jones X_{13-n}Y_n clusters

    Get PDF
    Detailed studies of the thermodynamic properties of selected binary Lennard-Jones clusters of the type X_{13-n}Y_n (where n=1,2,3) are presented. The total energy, heat capacity and first derivative of the heat capacity as a function of temperature are calculated by using the classical and path integral Monte Carlo methods combined with the parallel tempering technique. A modification in the phase change phenomena from the presence of impurity atoms and quantum effects is investigated.Comment: 14 pages, 13 figures. submitted to J. Chem. Phy

    Moments of spectral functions: Monte Carlo evaluation and verification

    Full text link
    The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely-differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval (β/2,β/2)(-\beta \hbar / 2, \beta \hbar/2). The algorithmic detail that leads to robust numerical approximations is the fact that the path integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is non-linear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.Comment: 13 pages, 2 figure

    Upon the existence of short-time approximations of any polynomial order for the computation of density matrices by path integral methods

    Full text link
    In this article, I provide significant mathematical evidence in support of the existence of short-time approximations of any polynomial order for the computation of density matrices of physical systems described by arbitrarily smooth and bounded from below potentials. While for Theorem 2, which is ``experimental'', I only provide a ``physicist's'' proof, I believe the present development is mathematically sound. As a verification, I explicitly construct two short-time approximations to the density matrix having convergence orders 3 and 4, respectively. Furthermore, in the Appendix, I derive the convergence constant for the trapezoidal Trotter path integral technique. The convergence orders and constants are then verified by numerical simulations. While the two short-time approximations constructed are of sure interest to physicists and chemists involved in Monte Carlo path integral simulations, the present article is also aimed at the mathematical community, who might find the results interesting and worth exploring. I conclude the paper by discussing the implications of the present findings with respect to the solvability of the dynamical sign problem appearing in real-time Feynman path integral simulations.Comment: 19 pages, 4 figures; the discrete short-time approximations are now treated as independent from their continuous version; new examples of discrete short-time approximations of order three and four are given; a new appendix containing a short review on Brownian motion has been added; also, some additional explanations are provided here and there; this is the last version; to appear in Phys. Rev.

    Local Variational Principle

    Full text link
    A generalization of the Gibbs-Bogoliubov-Feynman inequality for spinless particles is proven and then illustrated for the simple model of a symmetric double-well quartic potential. The method gives a pointwise lower bound for the finite-temperature density matrix and it can be systematically improved by the Trotter composition rule. It is also shown to produce groundstate energies better than the ones given by the Rayleigh-Ritz principle as applied to the groundstate eigenfunctions of the reference potentials. Based on this observation, it is argued that the Local Variational Principle performs better than the equivalent methods based on the centroid path idea and on the Gibbs-Bogoliubov-Feynman variational principle, especially in the range of low temperatures.Comment: 15 pages, 5 figures, one more section adde

    Feedback-optimized parallel tempering Monte Carlo

    Full text link
    We introduce an algorithm to systematically improve the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a way that the acceptance rates for replica swaps between adjacent temperatures are independent of the temperature and large enough to ensure frequent swaps. In this paper, we show that by choosing the temperatures with a modified version of the optimized ensemble feedback method we can minimize the round-trip times between the lowest and highest temperatures which effectively increases the efficiency of the parallel tempering algorithm. In particular, the density of temperatures in the optimized temperature set increases at the "bottlenecks'' of the simulation, such as phase transitions. In turn, the acceptance rates are now temperature dependent in the optimized temperature ensemble. We illustrate the feedback-optimized parallel tempering algorithm by studying the two-dimensional Ising ferromagnet and the two-dimensional fully-frustrated Ising model, and briefly discuss possible feedback schemes for systems that require configurational averages, such as spin glasses.Comment: 12 pages, 14 figure
    corecore