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ARTICLES

Energy estimators for random series path-integral methods

Cristian Predescu,? Dubravko Sabo, and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 28 May 2003; accepted 25 August 2003

We perform a thorough analysis on the choice of estimators for random series path integral methods.
In particular, we show that both the thermodynarfliemethod and the directH-method energy
estimators have finite variances and are straightforward to implement. It is demonstrated that the
agreement between the T-method and the H-method estimators provides an important consistency
check on the quality of the path integral simulations. We illustrate the behavior of the various
estimators by computing the total, kinetic, and potential energies of a molecular hydrogen cluster
using three different path integral techniques. Statistical tests are employed to validate the sampling
strategy adopted as well as to measure the performance of the parallel random number generator
utilized in the Monte Carlo simulation. Some issues raised by previous simulations of the hydrogen
cluster are clarified. €003 American Institute of Physic§DOI: 10.1063/1.1619372

I. INTRODUCTION In Sec. Il of the present article, we examine the thermo-
dynamic (T-method and direct(H-method estimators for
Numerical path integral methods have proved to bethe total energy. In order to avoid any confusion with earlier
highly useful tools in the analysis of finite temperature,estimators, we mention that in the present article by
many-body quantum systems central theme in such stud- T-method and H-method estimators we understand the re-
ies is the conscious use of dimensionality, both in the reforspective energy estimators introduced by Predescu and Doll
mulation of the original problem and in the subsequent nuin Ref. 2. Thus, the T-method estimator we employ does not
merical simulations. have the variance difficulties associated with the Barker es-
As the scale of the problems under study continues t@imator for large numbers of path variablegs the low-
grow, it becomes increasingly important that the formaltemperature simulation presented in the second part of the
properties of the numerical methods that are utilized be proparticle demonstrates, the present T-method estimator does not
erly characterized. Recently, Predescu and co-wofkérs exhibit any of the difficulties sometimes associated with the
have presented a number of results concerning the conveyirial estimator for low-temperature systems or for strongly
gence properties of random series-based path integral tecBorrelated Monte Carlo sampling techniqde¥? The
niques. Important in their own right, these formal propertiesT-method estimator is closely related and similar in form to
have also led to the development of a new class of patfhe centroid virial estimatdr** We expect the two estima-
integral methods, the so-called reweighted techni§uRs:  tors to have similar behavior with the nature of the quantum
weighted approaches accelerate the convergence of “primiystem, the temperature, and the Monte Carlo sampling
tive” series methods by including the effects of *higher- method. However, an important difference between the two
order” path variables in a simple, approximate fashion.estimators is the fact that the T-method estimator is a veri-
Reweighted methods achieve the convergence rate of relatggly|e thermodynamic estimator, in the sense that it is ob-
partial averaging approactesithout requiring the construc- tained by temperature differentiation of the quantum parti-
tion of the Gaussian transform of the underlying potentiakion function. This observation is important because the
energy function. temperature differentiation can be implemented numerically
_ Previous work on the reweighted method has focusegy j finite-difference scheme and, in principle, may lead to
principally on t?e construction of the quantum-mechanical,ymerically stable algorithms that do not require derivatives
density matrix:® In the present work, we wish to examine of the potential. For large dimensional systems or systems
estimatprs for yarious coordinat_e-diag_onal_ and oﬁ-diag(_)na_\hescribed by complicated potentials, we expect such algo-
properties. While the present discussion is focused prinCigithms to be significantly faster than those based on explicit

pally on reweighted methods, the results obtained argnaytical formulas. The relative merits of such algorithms
broadly applicable to more general random series apgi| be examined in future work.

proaches. In Sec. Ill, we examine the application of the reweighted
methods to a model problem, that of simulating the thermo-
dElectronic mail: cristianpredescu@brown.edu dynamic properties of the (H,, molecular cluster. In Sec.
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IV, we summarize our present findings and clarify a number >
of issues raised in previous studies of this molecular hydro- dP[a]= H du(ay), (2
gen systent>1® k=1
is the probability measure ofd such that the coordinate
mapsa—ay are independent identically distributedi.d.)

Il. ENERGY ESTIMATORS variables with distribution probability
In this section, we consider a one-dimensional quantum N 1 e ,
. : . du(a;) e %'da;, ()
canonical system characterized by inverse temperggure T

=1/(kgT) and set forward the task of computing its average

energy by Monte Carlo integration methods developec}

around several reweighted techniq€&.he physical system d

is made up of a particle of mass, moving in the potential BY(a)= > aA(u), O<u<1, (4)

V(x). We discuss the numerical implementation and the k=1

computational merits of both the T-method and H-method e, the right-hand side random series is equal in distribution

estimators. Any time the multidimensional extension is notg a standard Brownian bridge. The notaﬂaﬂ(ﬁ) in (4) is

obvious, we present the explicit formulas of the respectivahen appropriate and allows us to interpret the Brownian

estimators. bridge as a collection of random functions of argumant
We begin by presenting the general form of the pathindexed byu.

integral methods we employ in this paper. We remind the  Using the Ito—Nisio representation of the Brownian

reader that in terms of a standard Brownian motj&y ,u bridge, the Feynman—K&ormula takes the form
=0}, the Feynman—Kaformula has the expressith

hen

X ) PLoBs— | rBx] M:J dP[a]ex —ﬁflv %, (U)

pPLX, 1ﬁ - ogb1= 0bp= pfp(XaX,;B) Q 0 r
XE[e—ﬁfév(‘fBu)dulg-B]_:X/,O’BO:X]y (1) ”

whereo= (28/mg)Y/2 In this paper, we shall use the sym- +Uk21 Al duJ' ”

bol Il to denote the expected valGaverage valueof a cer- o .

tain random variable against the underlying probability meafor @ multidimensional system, the Feynman—-HKaenula
sure of the Brownian motioB, . It is straightforward to see S obtained by employing an independent random series for
that the first factor of the product in E¢f) (which represents €ach additional degree of freedom.

the conditional probability density that the rescaled Brown- A reweighted method constructed from the random se-
ian motiono'B,, reaches the point’ provided that it starts at "€S Zx-1axAk(u) is any sequence of approximations to the
the pointx) is the density matrix of a free particle of mass density matrix of the forth

Mo RW, .
pn (X,X";B) f f
——————= | du(ay)...| du(a
P[oB1=x'|0Boy=x]=psp(x,X"; B). pip(X.X";B)  Jr wag) R #(8qn+p)
Moreover, rather than using the conditional expectation ap- 1
pearing in the second factor of E(.), one usually employs Xex —BJ V| x(u)
a stochastic proces§B’;0=<u<1}, called a standard 0
Brownian bridge'"*® which is defined as a standard Brown- an+p
ian motion conditioned on the end points such tB%tzO +o E axAp k(u) du], (6)
and B(1)=0. In terms of the newly defined process, the k=1
Feynman—Kadormula reads whereq andp are some fixed integers, where
XX 1 A - if 1<k<
p( ,_ﬁ) :Eexp{_ﬂf VIx,(u)+ 0B%dul AW =Ay(u) if 1<k=n, 7
Pip(X. X" B) 0 and where
wherex, (u)=x+(x"—x)u is a straight line connecting the an+p %
pointsx andx’ and is called the reference path. > Apwi= D Aw)? (8)
' k=n+1

As discussed in Ref. 2, one of the most general construc-  k=n+1

tions of the stgndard Brownian bridge is given by the Ito—, £q (6), n indexes the sequence of reweighted approxima-
Nisio theorem’” Let {M(7) }i=1 be a system of functions on  iqng pRY(x,x"; B), sequence that converges to the density
the interval[0,1], which together with the constant function matrix p(x,x':8) in the limit n—c. Remark that the ap-

No(7)=1, make up an orthonormal basisliA[0,1]. Let proximation of indexn actually utilizesqn-+ p variables for
t path parameterization. In the construction of a certain path,
A(t)= fo)\k(u)du- the firstn functionsA, (u) coincide with the ones for the

corresponding series representation, as shown by(7gA
If Q is the space of infinite sequences(a;,a,,...) and number of —1)n+ p additional functions are constructed
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so that to maximize the order of convergence of the reThe quantityp(x;8)=p(x,X;B) is the diagonal density ma-

weighted approximation. Notice that if the resulting approxi-
mation has a convergence of ordeas measured against

trix. By convention, we drop the second variable of the pair
(x,x") any timex=x'. For instance, we us¥,(x,a;B) in-

then it has the same order of convergence when measuratead ofX,(x,x,a;3). By means of Eq(12), the average

against the total number of variablgea+ p, though the con-
vergence constant i3 times larger. This explains why the

number of additional functions is chosen to scale linearly

with n. For additional information, the reader is advised to
consult Ref. 4.

It is convenient to introduce the additional quantities
X (X, x",a; 8) and X..(x,x’,a;B), which are defined by the
expressions

X¢(U)

1
Xn(x,X’E;B)=pfp(x,x’;ﬂ)exp{ —ﬂfo \

qn+p
to D, akKn,k(u)}du] 9)
k=1
and
o 1
Xo(X,X",a; 8) = prp(X,X"; B)€X —BLV X (U)
+G’E a A (u) du], (10
k=1
respectively. With the new notation, E@) becomes
P )= | daprEXx ) a0
while the Feynman—Kaformula reads
p(x,X’;B)=J dP[a]X.(x,x",a;B). (12
Q

The analytical expressions of the functioﬁglk(u) de-

above can be recast as
Jrdxf qdP[a]X.(x,a;8)O(x)
Jrdx[qdP[a]X.(x,a;B)

This average can be recovered as the limit~ of the se-
qguence

(0)p= (14)

(0 :fRdend Pla]X,(x,a;8)O(x)
A [rdx[ odPa]Xn(x,&;B)

the terms of which are to be evaluated by Monte Carlo inte-
gration. The estimating functiod(x) appearing in the above
formula is called the point estimating function of the opera-
tor O.

An alternative to the point estimating function is the so-
called path estimating function, the derivation of which is
presented shortly. As demonstrated in the Appendix, the
function O(x) appearing in Eq.(14) can be replaced by
O[x+ UBS(E)], without changing the value of the average
(O)p. That is, the equality

(15

_ [xdx[odP[@]X..(x,a; 8)O[x+ sBY(a)]
(0)p= [dx[ odP[a]X..(x,a.8)

is valid for all O<u=<1. Averaging over the variable, one
obtains

_ [wdX[ odP[a]X.(x,; 8) 5O x+ oB(@) ]du
- JrdX[ odP[a]X.(x,3; 8) '

(O)g
(16)
Equation(16) shows that the ensemble average of the opera-

tor O can also be recovered as the limit>o of the se-
quence

pend on the nature of the reweighted techniques and are ge{@ﬁm

erally chosen to maximize the asymptotic convergence of th
respective reweighted technique¥o a large extent, the spe-

cific form of these functions is not important for the present

e
_ [rdxf odP[@]Xn(x,; 8) [ §O[ X+ 0B (@) ]du
a Jrdx[odP[a]Xn(x,a;8)

development, but the reader is advised to consult Refs. 4 and

6 for quadrature techniques and additional clarifications.
The remainder of the present section is split into two
parts. First, we discuss the problem of computing the en

semble averages of operators diagonal in coordinate repre-

sentation. In particular, this resolves the problem of comput

(17)

where we have set

Bg,n(a = kgl akAn,k(u)l

ing the average potential energy. Second, we consider thf%r convenience of notation

problem of evaluating the total energié®nce, also the ki-
netic energiesby means of the T-method and H-method es-
timators.

A. Operators diagonal in the coordinate
representation

By definition, the ensemble average of an operador
diagonal in the coordinate representation is

Jrp(X;B)O(x)dx
Jro(x; 8)dx

(O)p= (13

In the remainder of the present subsection, we discuss
the relative merits of the point and path estimators. We first
consider which of 0)% | and(0)%" is closer to{O) ; for a
given n assuming the averages given in E¢E5) and (17)
are computed exactly. Let us notice that Etp) can be put
in the form

(o, R (XiBI000
B [rdxpn (X 8)

The probability distribution
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RW(X'B)dX

Jren(x; B)dx’

represents the marginal distribution of the variaklee-
garded as a random variable on the sp&ce(), which is
endowed with the probability measure

Xn(x,a;8)dx dHa]
TrdxfodP[a]X,(x,a;8)

(18)

(19

Predescu et al.

compute the averaggO[x+ 0B () ]du. However, if the
function O(x) is the potentiaMV(x), then the smaller vari-
ance of the path estimator is a desirable feature because the
path averagefgV[x+ 0B ,(@)]du, which also enters the
expression oX,(x,a;B), is computed anyway.

To summarize the findings of the present subsection, the
point estimator provides a more accurate value but has a
larger variance than the path estimator. We next ask if there
are any methods for which one may construct an estimator

The reweighted techniques are designed so that the distribproviding the same values as the point estimator but having
tion given by Eq.(18) is as close as possible to the quantumthe variance of the path estimator. More precisely, we seek

statistical one, which is given by the expression

p(X;B)dx
Jro(x;B)dx’

methods for which there is a division=0uy=<u,
<Uq +1=1 such that the mesh m@xq|u,1—u| con-
verges to zero am—o and such that the point$x
+chu n(@);0si=q,+ 1} have the same marginal distribu-

$...$Uq

In designing the reweighted techniques, one seeks to op
mize the rate of convergence of the sequepR&(x,x’; 8)
—p(x,x";B) for all x andx’.*

For arbitrary u, the marginal distribution ofx
+0‘BS’H(5) is usually different from the one given by Eq.
(18) and is not optimized. With few notable exceptions to be
analyzed below, the points+ 0B ,(a) for differentu are ~ under the probability distribution given by E¢L9) is an
not equivalent, and their probability distribution may differ estimator satisfying the criteria outlined in this paragraph.
significantly from the quantum statistical on@owever, as There are two methods we employ in the present paper
shown in the Appendix, they become equivalent in the limitfor which such an estimator exists. The first one, is the trap-
n—o.) Therefore, especially for those reweighted tech-€zoidal Trotter discrete path integral meth@dr-DPI) ob-
niques having fast asymptotic convergence, we expect th@ined by the Trotter composition

I;hon asx. For such methods, the expected value of the esti-
mating function

An
2, Olx+ 0By (@](Ui1—u), (20)

point estimator to be more rapidly convergent withthan
the path estimator.

An additional issue appearing in Monte Carlo computa-

tions is the variance of the two estimating functidDéx)
and [{O[x+ aB{ ,(@)]du. In the limit n—c°, the variance
of the point estimating function converges to

fuadeQdP[ﬂxw(x,i;ﬁ)o(x)Z_ o2
X adPEX.(E B) O

_ [rdxf odP[A]X.(x,3; B) [ gO[x+ oBY(R) ]°duy
- TrdxfodP[alX..(x,a;B)

' B
PIT(X,X B)= JRdxl . .fRanpo( X, X1; =1

B

nri) 20

...po(Xn X'

of the short-time approximation

V(X)+V(x'
£T<x,x':ﬁ>=pfp<x,x';ﬂ>exr{—ﬁw .

It has been showffl that for n=2—1, the TT-DPI method
admits the following implementation

_<O>%’ TT(X Xr.ﬂ)
n LA _
while the variance of the path estimating function converges —r.:f dal,l---f day x-1(21) e
o pip(X,X"58)  Jr R
o 2I71
J o o dPLEIX..(x 3 B){[300x+ oBY(@) Jdu)? Xexp< IES RS )
JrdX[qdP[a]X.(x,a;8) 2=
k
—(0)2. 2
g o xexp — B3, wpV|x(up)

The Cauchy—-Schwartz inequality implies i=

1 0 2 1 0 5 k

{ JO O[X+ O'Bu(a)]dU} = fo O[X+ UBu(a)] du, + 0-|:21 F|,[2|1ui]+1(ui)a|,[2|1ui]+1H ,

and shows that the variance of the path estimating function is (22)
always smaller than that of the point estimating function. The Kk ok
actual decrease in the variance is not always significant bVhereui=2""i for 0<i<2" and
cause the points+ aBS(a for differentu are strongly cor- Cke1) i ‘
related. Depending on the nature of the funct@(x), the 0= 2 , if 1€{0,27,
variance decrease may not compensate the effort required to ' | 27K, if 1<i=<2-1.
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The functionsF, (u) are the so-called Schauder functidhs, pa' (X B)O(x)dx
the definitions of which are presented in the cited references. Fep 706 B)dx
We leave it for the reader to use E@1) and show that if RPn 15

x=x', then all the pointx+ cr~BSi (@) have identical mar-
ginal distribution given by the formula

At least for the ensemble average of the potential energy, one
should always use the path estimator, which has smaller
paT(x; B)dx variance.
T, Ay A second method for which there is an estimator giving
Jrpn (x;B)dx’ - - -
the same values as the point estimator but havagymp-

In this case, the point and the path estimators produce idefotically, asn—) the variance of the path estimator is the
tical results for the ensemble average of a diagonal operat@jo-called Ley—Ciesielski reweighted techniqy®W-LCPI)
o) defined by the formufa

(=Y

Lc . k+2 271

pn (X,X";B)

n—,:J dal,l---j dak+2,2K+l(27T)_(4n+3)/2eXp<_52 2 a")
R R

Pip(X,X"; B) =1 =
xexp{ ,8]

k+2
X (U)+02 (21~ 1y] R 2 -1g+2(W) [d

} (23

where [2'"1u] is the integer part of '2u. It has been produces the same results as the point estimator, but it has
shown that fon=2%—1, the RW-LCPI method can be putin the variance of the path estimator. As far as the evaluation of
the Trotter product forth the average potential energy is concerned, in order to avoid
8 unnecessary Ealls to thE potential routine, it is desirable that

LC ey — LC P the points{2~"i;0<i=<2"} be among the quadrature points
n (X5 B)= fRXm"'fRdX”po (X'Xl’ n+1 utilized fof the computat}ion of the path averages appearing

in Eqg. (23). The quadrature technique designed in Ref. 6

X...p- (x X! (24) shares this property. As opposed to the TT-DPI method, the
o\ n+1 point and the path estimators for the RW-LCPI method pro-
duce different results.
where
X, X'
o A _ 3,2f f f o (al+aztai B. Estimators for the total energy
pfp(xvx iﬂ (277) ) ) . . .
In this subsection, we discuss the implementation of the
1 , thermodynamigT) and the directH) estimators for the total
><exp[ —Bfo VIX+ (X' =x)u energy. The T-method estimator is defined as the following
functional of the diagonal density matrix:
+ al(TCO(U) + azo'l_o(u)
(E)L=— —In f p(x; B)dx|. (26)
+ asoRo(u)]du] da,da,das. oo
The above formula can be expressed as the statistical average
The analytical expressions of the functldﬁ{;ﬂ (u), Lo(u), . T rdxXS odP[a]X..(x, & B)EL(x,a: B)
Ro(u), andCy(u) can be found in Refs. 4 and 6. (BE)p= T odPlAIX. (X & , (27
Again, we leave it for the reader to use E@4) and rdxfdP{a]X.(x.a; 8)
prove that ifx’ =x, then all the points where the T-method estimating functi&l (x,a; 3) can be
i shown to bé
X+ a ol [ up),
O'ZI |,[2| 1ui]+l |Y[2I lui]+1( |) ET(X a ,8)_ J V[X+0’BO(_)]dU
with u;=2"ki for 0<i=<2* have identical marginal distribu- .
tions equal to that ok. The estimator + %j V'[x+0B%@)]B%(@)du, (28
0

2k—1 k+2
~ ~ rovided thaie ™ #V® has(Soboley first order derivatives as
2 kz O X+U’2 a, [zlflu_]+1F|(n[)zl—lu_]+1(ui) ) P ( \)

= =1 i , i a function ofx. For ad-dimensional system, the expression
(25) of the T-method estimating function reads
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T I = -
Ew(Xl,...,Xd ,al,...,ad,ﬂ)

d ! 0,1 —
=—+ V[Xl+ O-lBu' (al),...,Xd
0

+alBB*1<a—1>,...,xd+ad88"‘<3d>]]

xBY (@) du.

The ensemble average energy can be obtained as t

limit n—oo of the sequence

Jrdx[odP[a]Xn(x,a; B)EN(X,a; B)

Predescu et al.

El(x,a;8) given by Eq.(21) is a well defined function,
the average value of which is finite for smooth enough
potentials.

A second energy estimator we employ in the present
paper is the H-method estimator. This direct estimator is de-
fined by the equation

fR x P X! B)|x’ xdx

<E>’8 Jro(X; B)dX ' (32

where the Hamiltonian of the systeHh,, is assumed to act
on the density matrix through the variabté. By explicit
Ig;(gmput::ltlon and some integration by parts, the H-method
estimator can be expressed as the statistical average

f]"\dxfﬂd P[an(XIEB) Ew(xvaﬂ)

b= [ axTodPEXa (e f) O e
Where of the estimating functioh
H = 1
ET(xaB)— fV[x+aB°n(—)]du E:(x,a;8)= 55 25
o (1 ~ ~ xv'[x+UBS@]V'[owE@]du dr.
+ f V'[x+ 0B} (a)]BS (@ du. (3D) a0
0

The finite-dimensional integral appearing in E80) can be  The H-estimator is properly defined even for potentials that
evaluated by Monte Carlo integration. In the limit>, the ~ do not have second-order derivatives. Fod-dimensional
variance of the estimator is finite because the square dafystem, the H-method estimating function reads

d
,8+V(X1"' xd)+2

EH(X1,... Xg,81,....24.8B)=

ff( u-r7) [—V[X1+015 (@), Xat+ 0By (@)

1 4mg;

J 0,1 —= 0d, =
X = Vix;+01B2 @y),... xg+ 04B%4(@g)] {du dr. (35)
i

The reader should notice that the double integral appearing y Jrdxfod PlalXq(x, 2 B)EN(x,a:8)

in Eq. (34) is really a sum of products of one dimensional  (E)j .= = : (37
integrals. Indeed, one easily computes JxdxfodP[a]Xx(x,3; B)
where
1 2ﬁ2
EX(x@8)= 55+ V() + 5 EE‘(xE;m—
2B 2B
XV'[x+aB8,n<5>]
XV'[x+0B? (a)]du dr. (38

The forms of the T- and the H-method estimators derived
here with the reweighted techniques in mind extend naturally
to the TT-DPI method by means of ER2). One just re-
places the one dimensional integrals appearing in EB18.
and(38) by appropriate trapezoidal quadrature sums.

For the reweighted techniques, we anticipate that the ki-
The H-method estimator is the sum of the “classical” energynetic energy estimator entering the H-method estimator pro-
and a “quantum” correction term. Equatid3) shows that vides more accurate results than the kinetic energy estimator
the total energy can also be recovered as the limitoo entering the T-method estimator. As for the point and the
from the sequence path estimators of diagonal operators, the derivatives of the

1
XH udv’ [x+aBS(§)]du]
{ V/'[x+ B (_)]du]
#2B

2
[f uVv’ [x+aBu(_)]du+ . (36)

2m0
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density matrix against the spatial coordinates, which measungath estimating function for the TT-DPI method and with the
fluctuations around the preferential pointandx’ for which  estimating function given by Eq(25 for the RW-LCPI
the reweighted density matrices are optimized, are expecteuethod, respectively.

to be reproduced in a better way than the temperature deriva-

tives, which involve unoptimized path-averaged fluctuations.

However, for sufficiently low temperatures, the variance ofl!l: A NUMERICAL EXAMPLE

the H-method kinetic energy estimator is expected t0 be |y have tested the relative merits of the T- and

This larger variance is due to the facigf appearing in Egs.  ojecules at a temperature of 6 K, using three different path

(34) and(3i_3). ) integral methods. Two of these methods, the trapezoidal
_There is one special property of the T- and H-methodr qyer giscrete path integral method and ary-eCiesielski

estimators that proves to be important in simulations. Let u?eweighted technique, have been already presented in the

notice that by virtue of the Bloch equation preceding section. The third method is a Wiener—Fourier re-
weighted (RW-WFP)) technique introduced in Ref. 4. The

N J . . .
Hop(x,x";8)=——p(x,x"; B), numerical implementation of the methods has been exten-
P sively discussed in Ref. 6 by some of us and are not re-
we have the equalit viewed here.
a y The physical system we study has been recently exam-
(E)p=(E)i=(E)T. ined by Chakravarty, Gordillo, and Ceperteys well as by

Doll and Freematf in their comparison of Fourier and dis-
Here, the symboi= signifies that the average enerdy)z is  crete path integral Monte Carlo methods. The total potential
definedto be the common value of the T-method and theenergy of the (H),, cluster is given by

H-method energy estimators, provided that these are equal. N N
However, sincepR¥(x,x’';B) does not satisfy the Bloch Vo= S VLrD+ S v(r), (39
equation(except for the free particlein general i<j T

whereV 4(rj;) is the pair interaction of Lennard-Jon@s))

<E>H :f]RFIX’pEWéV)\(/X,;B)|X’=XdX potentia|
pn Jren (X, B)dx o\ 2 oL\
. P - Vis(rij) =4ep (r_ _(r_) , (40
#(E)pn="— ﬁln J pn (X; B)dx _ & . 4 _
R andV,(r;) is the constraining potential
and the T- and H-method estimators produce the same result _ Iri— Reml 20
only in the limitn—o. Given that the two energy estimators Ve(ri) =€y R. ' (42)

discussed in the present section can be computed simulta-

neously without incurring any computational penalty, we rec-The values of the Lennard-Jones parametggsande ; used

ommend that the agreement between the T- and th8'® 2.96 A and 34.2 K, respectivefyRe i§ th_e coordinate

H-method estimators be used as a verification tool in actua(?f the center of mass of the cluster and is given by

simulations in order to check the convergence of various 1 N

path integral methods. However, we emphasize that the Rcm:NE ri. (42)

agreement between the T- and the H-method estimators is not =1

a sufficient convergence criterion and in practice, the converFinally, R.= 40 ; is the constraining radius. The role of the

gence of different ensemble averages with the number afonstraining potentiaV/.(r;) is to prevent molecules from

path variables should also be monitored. permanently leaving the cluster since the cluster in vacuum
As Egs.(31) and(38) show, the path and the point esti- at any finite temperature is metastable with respect to

mating functions for the potential energy enter naturally theevaporation.

expressions of the T- and H-method estimating functions, At the temperature fo6 K and at the small densities

respectively. For the purpose of using the agreement betweamployed in our computation, the molecules of hydrogen can

the two energy estimators as a verification tool for converbe described by spherical rotational wave functions, because

gence, one should not replace the path estimating functiothe majority of the molecules are in tle= 0 state. To a good

for the potential energy in the expression of the T-methodapproximation, the molecules can be regarded as spherical

estimator with the point estimating function, even if this maybosons interacting through isotropic pair potentials. How-

improve the estimated energy. For special cases, as for irever, a thorough study of parahydrogen clusters has showed

stance the TT-DPI and RW-LCPI methods discussed in théhat quantum exchange of molecules is small at temperatures

previous subsection, one may replace the point estimatingreater tha 2 K and that the hydrogen molecules can be

function for the potential energy appearing in the expressiosafely treated as distinguishable partides.

of the H-method estimator with other estimating functions  The optimal choice of the paramet&; for the con-

that produce the same value but have smaller variance. Istraining potential has been discussed in recent WbifkR,

this paper, we replace the point estimating function with thes taken to be too small, the properties of the system become
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sensitive to its choice, whereas large value®gtan result  attempt to move the rest of the path variables associated with
in problems attaining an ergodic simulation. To facilitatethe particlei. Both the physical coordinates and the path
comparisons, in the current worR. has been chosen to be variables are moved in a cube centered about the old coordi-
identical to that used in Ref. 15. While this choice of con-nates:
straining potential can induce ergodicity problems in calcu- = A (2u—1)
lations of fluctuation quantities like the heat capacity, we .
provide evidence below that the simulations in the currenaind
work are ergodic.
The three path integral methods we have employed uti-
lize different numbers of path variables for a given ingex where the three components wfare independent uniformly
For instance, the TT-DRith order approximation to the den- distributed random numbers on the inter{aJ1]. Through-
sity matrix p;"(x,x";8) utilizes n path variables for each out our simulations, we have used the following maximum
physical dimension, whereas:“(x,x"; 8) andp"F(x,x’;8)  displacement values\,=0.26 A andA,=0.15. The sam-
utilize 4n+3 and 4 path variables, respectively. To ensure pling technique employed guarantees an acceptance ratio be-
fair comparison with respect to the number of path variablesween 30% and 70% for all methods studied and ffigr
employed, we have tabled the total number of variables =256.
used for each physical dimension and not the index Because the acceptance ratio drops below 20% for the
Wiener—Fourier reweighted technique with =512, each
most basic step of the previously described algorithm has
We have discussed in Sec. Il that the evaluation of théheen decomposed into two successive steps. The first step is
ensemble average of any observable eventually reduces tfecomposed into an attempt to move the physical coordinate
the evaluation of the average of a certain estimating functiom; together with the first 1/8 of the path variablas fol-
against the probability distribution lowed by an attempt to move the physical coordingtéo-
X.(x.@B)dx dFa] gether with thg nex‘; 1(8 path \(arif':lblq_s The seconq §tep is '
— (43 decomposed in a similar fashion; half of the remaining vari-
Jrdx[ odP[a]Xq(x,8;8) ables have been moved in a first attempt and then the other
or its multidimensional counterpart. This probability distri- half in a second attempt. This restores the overall acceptance
bution can be sampled with the help of the Metropolis algo-atio to about 33%. In fact, we have monitored separately the
rithm, which comprises the following step?° One initial- ~ acceptance ratio for the four different steps necessary to up-
izes the imaginary-time paths in some fashion. Then, onéate all the coordinates associated with a given particle and
attempts a trial move of the paths, which may involve changhave made sure that the sampling is well balanced in the
ing several coordinates at a time. The displacement of theense that the acceptance for each individual step is about
new paths is usually chosen to be relative to the old paths. T80% or larger.
ensure ergodicity, one makes sure that all variables of the As a counting device, we definepmssas the minimal
system are eventually moved in a cyclic or a random fashiorset of Monte Carlo attempts over all variables in the system.
The proposed path is then accepted or rejected with a certaify Pass consists of 22=44 basic steps for all simulations
probability. The average value of the quantity of interest iswith n,<256. For the Wiener—Fourier reweighted technique
computed by averaging the values of the corresponding estivith n,=512, a pass consists of 22=88 basic attempted
mating function evaluated at the current paths. moves. One also defines ldock as a computational unit
To establish some notation necessary for our discussiorinade up of ten thousand passes.
for each vector;=(x;,y;,z) denoting the physical coordi-
nates of the particle, we leta={a;,....a, } be the col- B Embarrassingly parallel computation
lection of path variables associated with the respective par- In order to achieve a statistical error of about 0.1
ticle. Each K/molecule for all computed energies, we have employed a
a = (ak,.a’y.al) large number of Monte Carlo passé.4 million) and we
KRSk Sk Sk have divided the computation in 16 independent tasks to be
is itself a three-dimensional vector whose components derun in parallel. For the Wiener—Fourier reweighted method
note thekth parameter of particle for thex, y, andz coor-  with n,=512, we have utilized a number of 40 million
dinates, respectively. Going back to the description of thepasses divided in 80 independent tasks. The Monte Carlo
Metropolis algorithm, the full imaginary-time path has beensimulations are embarrassingly parallel provided that one can
initialized by choosing the physical coordinatggandomly  generate independent streams of uniformly distributed ran-
in a sphere of radiu®k, centered about origin. The path dom numbers. In this situation, there is no need for commu-
variablesa; have been initialized with zero. nication among the different code replica running on differ-
Except for the Wiener—Fourier method with, =512  ent nodes, and the program is an ideal candidate for use on a
(n=128), we update the individual particles one at a time indistributed computing cluster. However, to be mathemati-
a cyclic fashion. Each update of a particle consists of arcally rigorous, it is necessary to ensure that all the commu-
attempt to move the physical coordinaetogether with the nication needed is already buried in the independence of the
first one quarter of the path variablgs(that is, together with  streams of random numbers. This underlies the need for
the variables{a; ,;1<k=<[n,/4]}) followed by a separate “good” parallel random number generators.

a  =a  +A,(2u—1),

A. Sampling strategy
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The Mersenne twistefMT) is a fast serial pseudoran- The validity of this assumption can be verified with the help
dom number generating algorithm with a long period andof the Shapiro—Wilks normality teé®. If the collection of
good k-distribution propertie€® Quite interestingly, the al- samplesZ; ; does not pass the test, it does not necessarily
gorithm allows for the development of random number genfollow that the sample<;; are not independent, as their
erators meeting certain user specifications. For instance, ortlistribution is normal only if the size of the blocks is suffi-
may specify the periodwhich must be a Mersenne prime ciently large. At a significance level of 5%, we do not reject
number, i.e., a prime number of the formi-21), the word the Gaussian distribution hypothesis for all computed aver-
size, or the memory size. Given a specified period, one magge properties. To within the statistical significance of our
still produce various algorithms which differ by their charac- calculations, the samplés ; can be assumed to be indepen-
teristic polynomials. The dynamic creation of distributed ran-dent and have a Gaussian distribution.
dom number generators is based on the hypothesis that MT A second set of tests consists in verifying that the row
random number generators having relatively prime characteend column averages &f ; have Gaussian distributions cen-

istic polynomials produce highly independent streams of rantered aroundZ with variancess?(Z)/65 anda?(Z)/16, re-
dom numbers’ Because the laws by which the numbers arespectively. The validity of this distribution follows from the
generated are significantly different, it is very probable thatcentral limit theorem and the assumption that the samples
the streams produced by the different generators are highly, ; are independent and have a Gaussian distribution char-
uncorrelated. In this paper, we have used the Dynamic Cressierized by the averagz and the variancer2(Z). It is

H H 3217
ator C-language libraf§ with the Mersenne number %1 important to emphasize that the row averages must pass this
—1. The library outputs streams of 32-bit integers, which argagt Ag previously discussed, the number of blocks in a

easy to convert into real numbers on the intef@l]. Dif-  gream should be sufficiently large so that the row averages
ferent streams are identified by different identification num-,5ve the required distribution even if the independent

bers. The streams have been initialized once at the begi””i%mpleszi ; do not have a Gaussian distribution. Again, un-

of the simulation with different seeds. der the assumption of independence only, the row averages

Given the 16 streams of independent random numbersShould have a Gaussian distribution centered ardlirzhd

the Monte Carlo simulation proceeds as follows. For eacrhave variancar2(Z)/Nyoqe for a sufficiently large number

stream, one performs an independent simulation consistingf blocks N We have employed the Kolmogorov—
of 65 blocks. These blocks are preceded by 13 equilibrationy .- " Sl{('{’ig?compare the distributions of the row and

blocks, which are needed to bring the system into prObal‘q’l%olumn averages with the theoretical Gaussian distributions.

configurations but do not contribute to the averages of th% . :
L9 . . : . or all computed average properties, we find that the respec-
estimating functions. For the Wiener—Fourier reweighted

4 - . tive distributions are identical at a statistical significance
method withn, =512, we use 80. mdependent streams_qf > evel of 5%. The agreement for the distribution of the row
blocks each, for a total of 40 million passes. The equilibra-

tion phase consists of 10 blocks for each stream. Ideally, thaverages Is evidence that the streams generated by the Dy-

L amic Creator package are sufficiently independent, whereas
Liecrilgrgrt]l o{;?i'?ﬁ;'?#:;gf;rgz ir?hueidcs; cStoesdenr:)o Sf,i Sflj) T{?he agreement for the distribution of the column averages is
y large, 9 b PrOPErty 104, idence that the block averages of the same streams are

different streams are independent and normally distributede
ihdependent.

ZZti(ilf(i:(ta?jtebd ?I/I 2;5;?;;?\'5“\?2 ;f;/zregf;f#}z;equwement 'S For the third set of tests, we have considered two time-
y P : dseries{Zi’ ,1<i<16-65} and{Z{ ,1<i<16-65} obtained by

We have collected individual averages for all blocks an .
. o concatenating the rows of the mati# ; and the columns,
streams and performed several statistical tests verifying the . : , .

R . . respectively. We then have studied the autocorrelation of the
applicability of the central limit theorem as well as the inde-

. two tim ries for a maximum | f 32. Th rrelation
pendence between the block averages of same or dlfferent0 time series for a maximum lag of 3 e correlatio

streams. Let{Z, ,:1=<i=16:1=j=65 denote the block- coefficients for a lagk=32 are computed with the formula

averages of the propert¥ for streami and blockj (the 1 _ _

RW-WFPI simulation forn,=512 has been analyzed in a rﬁzaz(z) 16.65 |=21 (Z{=2)(Z{ ,\—2),

similar fashion. Under the assumption that the size of the

blocks is large enough so that the correlation between diffewhereZ/, =7/, 1445 if i +k>16-65. Under the indepen-

ent block-averages is negligible and under the assumptiodlence hypothesis of the sampl&s, the statistics of the

that the block-averages for different streams are highly uneorrelation coefficients for &k=32 is normal with average

correlated, the valueg; ; should have a Gaussian distribu- zero and standard deviation’ = 1/\/16-65. Moreover, the

tion centered around the average value correlation coefficients can be regarded as independent
samples of this normal distribution. By the binomial distri-

16-65

1 0k bution, the probability that at most correlation coefficients
~ 16 6521 ;1 Zij (44 Jie outside the intervel —20',20"' | is given by the formula
o 32
with variance — U ki1 — )32k
D T A
1 16 65 ) - o
2(7)= 72 | _72 45 whereg~0.046 is the probability that a normal distributed
(2 16 65( 21 j§=:l b 49 variable of mean zero and standard deviatdnlies outside
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0.3 : : : confidence. The 5% probability that the results lie outside the
e / confidence interval is chosen to agree with the level of sig-
& 20 nificance of the statistical tests

0.01 [\ PANAAANAN N The analysis performed in the present subsection dem-

A4

0 10 20 30 onstrates that the streams generated by the Dynamic Creator
0.3 ' : ' algorithm have negligible correlation at least for our
e o purposes.
& 0.0. A separate advantage in the use of independent streams

is to overcome the phenomenon of quasiergoditityhich
0 10 20 30 might appear in Monte Carlo simulations whenever the dis-
k tribution that is sampled has several well defined minima that
FIG. 1. Correlograms for the time-serigé andZ!' . The propertyZ is the ~ are separated by walls of high energy. In this case, the ran-
average ensemble energy computed by means of the H-method estimatgom walker may be trapped in one of the wells and never
us?ng the RW-WFPI method with,=32. One notices the}t both the corre- sample the others, or sample them with the wrong frequency.
lation between the block averagesX and the correlation between the . . .
streams (%) are negligible. The' Monte Carlo S|mu'lat|0n may pass all the aforementioned
statistical tests but still produce the wrong results. For our
system, the probability that such a situation may occur is

the interval[ — 20 20" ]. One compute$(3)=0.942 and ql_Jite low becau_se the sy_stem is highly quantum mechanical
P(4)=0.985 so at a level of significance of 5%, the hypoth-W'th strong barrier tun.ngllmg. Moreover, the.16 mdgpendgnt
esis that the|, are independent samples of a normally dis-Streams have beep mmahzed randomly in configuration
tributed variable of mean zero and standard deviatidn SPace. This makes it unlikely that all the streams are trapped
=1/16.65 should be rejected if 4 or more correlation PreCisely into the same local minimum or group of local
coefficients lying outside the interval—20',20'] are ~Minima. Evidence forqua5|ergod|C|ty may be captured in the
observed. form of a few outlying averages among the stream averages.
The autocorrelation of the seri@ is representative of SUch outlying averages have not been observed.
the correlation between the block averages of same streams, ] )
whereas the autocorrelation of the time sefiéss represen-  C- Summary and discussion
tative of the correlation between the blocks of similar rankOf the computed averages
corresponding to different streams. Figure 1 shows the cor- The computed averages for all methods and estimators
relograms of the two series for a RW-WFPI Monte Carlo utilized are presented in Tables I-Ill. For a given number of
simulation with n,=32. The computed property is the path variablesn,, the RW-WFPI, RW-LCPI, and TT-DPI
H-method energy estimator. Both seri€sandZ{ have only  methods utilize 2,, 2.25,, andn, quadrature points, re-
one point lying outside the intervdl—20',20"]. These spectively. (For a discussion of the minimal number of
points arer{ andr’,, respectively(of course, the points quadrature points and of the nature of the quadrature
=rg=1 are not counted Consequently, the simulation schemes that must be employed for the first two methods, the
passes our third statistical test. In fact, all the simulationgeader should consult Ref. 6. For the RW-WFPI method, we
performed have passed this statistical test for all computetlave utilized 2, Gauss—Legendre quadrature points, though
properties. We conclude that the correlation between the number of 1.78, points would have sufficed.The ob-
block averages of same or different streams is negligible. Bwerved overall computational time for the three methods have
the central limit theorem, the statistical error in the determi-followed the ratios 2:2.25:1, even though the time necessary
nation of the average of the propeiyis to compute the paths is proportional nf for the first
— method and tm, log,(n,) for the other methods. The com-
*20(2)/16-65, (46 putation of the ;;aths tz;kes full advantage of the vector float-
whereo?(Z) is defined by Eq(45). (For the statistical error, ing point units of the modern processors and is dominated by
we employ the & value, corresponding to an interval of 95% the calls to the potential, except for very langg.

TABLE |I. Listed are the results obtained by the Wiener—Fourier reweighted path integral method. Average
potential(V) 4, kinetic(K) z, and total energieéE) ; are calculated with the help of the T- and H-estimators as
functions of the number of path variables. The error bars are two standard deviation values. All energies are
given in K/molecule.

n, (E)p (E)s g )g (K)p (K)g

4  -57.66:0.05 —16.63-0.18 —82.14:0.07 —61.72-0.12 24.480.02 45.0%0.15
8  —37.61:0.05 -17.77:0.16 —64.74:0.06 -—53.07£0.11 27.130.02 352%0.13
16  —25.68-0.04 —18.28-0.13 —54.27-0.06 —49.33:0.10 28.66:0.03 31.06:0.11
32 —20.23:0.04 -1800:0.12 —49.66:0.06 —48.05:0.10 29.42:0.03 30.050.11
64  —18.29-0.04 —17.85-0.11 —48.19-0.06 —47.86:0.09 29.96-:0.03 30.030.11

128 —17.75-0.04 —17.64-0.12 —47.83:0.06 —47.81+-0.09 30.08-0.03 30.1%0.11
256 —17.71+0.04 —17.70£0.12 —47.85-0.07 —47.87+0.10 30.14:0.03 30.1%#0.12
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TABLE Il. Listed are the results obtained by thévye-Ciesielski reweighted path integral method. The format
is that of Table I.

n, (E)p (E)g g Vg (K)p (K)g

3 —70.46+-0.06 18.24-0.20 —93.47-0.07 —69.03:0.09 23.0%0.02 87.27#0.19
7 —44.08-0.05 —10.81+0.15 —71.03-0.06 —55.08:-0.08 26.94:0.02 44.280.14
15 —29.84-0.04 —15.84+0.12 —58.33£0.06 —49.10-0.07 28.56-0.02 33.26:0.12
31 —22.76:0.04 —17.40-0.10 —51.95-0.06 —47.83:0.06 29.19%0.03 30.43%0.11
63 —19.50-0.04 —17.68:0.10 —49.15£0.06 —47.6%-0.06 29.65-0.03 30.010.11
127  —18.25-0.04 —17.68:0.10 —48.20:0.06 —47.80+-0.06 29.95-0.03 30.1%*0.11
255 —17.84-0.04 —17.65:0.11 —47.93:0.07 -—47.85-0.07 30.0%0.03 30.26:-0.12

As discussed in Ref. 6, the asymptotic convergence fothan the variance of the T-method estimator and the differ-
the reweighted techniques is expected to be cubic, even fance is even more pronounced if one compares the corre-
the Lennard-Jones potential that is not included in the classponding kinetic estimators.
of potentials for which cubic convergence has been demon- As discussed in Sec. Il A, the path estimator for the po-
strated formally. We find that the asymptotic convergence isential energy has a smaller variance than the point estimator.
attained only for very larga,, as one may see by compar- Indeed, the results from Table | show that the variance of the
ing for example the total, potential, and kinetic energiespath estimator is approximately (0.9/(?6)2.25 times
computed with the help of the T-method estimator for thesmaller than the variance of the point estimator. In the case
RW-LCPI and the TT-DPI methods. Even if the latter methodof the RW-LCPI and TT-DPI methods, we have employed
has only 1A2 asymptotic convergence, the two methods pro-the estimator given by Eq25) and the path estimator, re-
duce almost equal results. In fact, a numerical analysis of thgpectively. These were shown to produce values identical to
relationship the point estimator but have the variance of the path estima-
tor. For the RW-WFPI and RW-LCPI methods, the point and
the path estimators produce different results. Due to the very
design of the reweighted techniques, we have argued that the

in which the left-hand side quantity is plotted againshi)¢ point estimator results should be the more accurate ones.
for different values ofe, suggests that, while the methods This theoretical prediction is well supported by the values

have converged within the statistical error, none of the thre@resented in Tables | and I1.

methods includes sufficiently large valuesmfto attain the While we have argued that the H-method estimator is a
ultimate asymptotic rate of convergence. better estimator as valu@gut not necessarily as variance

When comparing the values of the H-method energy esthan the T-method estimator for the reweighted methods, it is
timator and of the related potential and kinetic estimators fogpparent from Table Il that the same difference persists for
the three path integral techniques, one notices that the RWhe trapezoidal Trotter scheme. As discussed before, for the
LCPI technique provides better values than the TT-DPITT-DPI method, the point and path estimators provide the
method. The H-method estimator has a better behavior iéame value for the average potential. As opposed to the re-
used together with a reweighted technique. This behavior igeigthed techniques, the H-method kinetic estimator is less
consistent with the analysis we have performed in Sec. Il omccurate than the T-method kinetic energy estimator. Quite
the values of the potential point-estimators and the excellerititerestingly, even if individually the potential and the ki-
values found with the RW-WFPI method. For the reweightednetic parts are more accurate for the T-method estimator, it is
techniques, the H-method estimator provides better energyne H-method energy estimator that provides a more accurate
values than the T-method estimator. This is also true of théotal energy. Clearly, a strong compensation of errors appears
potential and kinetic parts of the estimators. However, then the case of the H-method estimator. Such a compensation
variance of the H-method estimator is significantly largerof errors is generally characteristic of variational methods. In

_ const
(B)on,~ (Bt (e

TABLE lll. Listed are the results obtained by the trapezoidal Trotter discrete path integral method. The format
is that of Table I.

n, (E)p (E)g (V)b V) (K)p (K)g
3 —68.54+0.05 78.080.30 —89.88£0.07 —89.88-0.07 21.34-0.02 167.9%0.32
7 —45.29-0.05 7.22:0.19 —70.88-0.06 —70.88:0.06 25.580.02 78.16:0.21
15 —30.61+0.04 —12.52:0.13 —58.53+0.06 —58.53-0.06 27.920.02 46.010.15
31 —22.95-0.04 —-16.86:0.11 —51.99-0.06 —51.99-0.06 29.04-0.03 35.14:0.12
63 —19.55-0.04 -17.66£0.10 —49.19+0.06 —49.19-0.06 29.65-0.03 31.530.11
127 —18.29-0.04 —17.70:0.10 —48.27+0.06 —48.27-0.06 29.9740.03 30.5%0.11
255 —17.86£0.04 —17.71+0.11 —47.94£0.07 —47.94-0.07 30.0Z#0.03 30.230.12
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TABLE IV. Estimated energies in K/molecule for the {H, cluster com-  that the reweighted path integral methods discussed here pro-

puted with the help of the Wiener—Fourier reweighted technique using 512 : ; ; _
path variables and 40 million Monte Carlo passes. Listed are the averag%éIde a broadly appllcable, S|mple, and forma”y well charac

potential(V) 4, kinetic (K)z, and total energie$E); calculated with the terized set of techniques. As demonSt_rated by the pre_sent
help of the T-methodleft column and H-methodright column estimators.  results, they are capable of producing high-quality numerical

The reported errors are two standard deviations. results for problems of appreciable physical complexity.
=y —17.68:0.02 () 17.71:0.08 Moreover, they do so Wlthout the.assumptlon of a particular
(v)“? 47.82¢0.03 (V)i _47.81-0.05 form for the underlying microscopic forces. Furthermore, the
<K>i 30.13+0.02 <K>§ 30.10+0.06 estimators described in the present paper are convenient, ac-

curate, and easily implemented for any random series ap-
proach. As discussed in Sec. lll, when used together, the T

) ] ) ] and H-method estimators provide an important consistency
this respect, notice that the TT-DPI density matrices are poSixneck on the quality of the path integral simulations. Such

tive definite because they are obtained by Lie—Trotter COMgonsistency checks are a valuable element in judging the
posing a certain symmetrical short-time approximation. Byreliability of particular simulations.
the Ritz variational principle, the H-method energy estimator ~ p¢ previously mentioned, the cluster application dis-
cannot have a value smaller than the ground-state energy,sseqd here provides a convenient test bed for the develop-
Thus, the Ritz variational principle provides some control 0Ny ant of numerical methods. For this reason. we have exer-
the values of the H-method estimator, but not on the indiviseq gue diligence with respect to the quality of our final
vidual components, nor on the T-method estimator. The RW;agits summarized in Table IV. As discussed in Sec. Ill, we
LCPI density matrices are also positive definiterier2 and  paye subjected both the parallel random number generator
indeed, the energy provided by the H-method estimator igmpjoyed and the numerical results obtained to a series of
still better than what the values of the potential and kineticy, 5jity-control tests. Beyond these statistical checks, it is
parts suggest. While a final resolution awaits further study, ifmnortant to note there is an internal consistency check on
is apparent that this finding is not related to the asymptotiGne qyality of the present results. Specifically, as is evident in
rate of convergence of the path integral technique. Tables I-IlI, the kinetic, potential, and total energies from
Among the three methods presented, the RW-WFPI hag,q three different path integral approackeapezoidal Trot-
the fastest convergence for all properties studied. Moreovefg, reweighted Ley—Ciesielski, and reweighted Wiener-
for n,=128 andn, =256, there is a good agreemémithin £ riep all agree. It is also important to note in this context
statistical noisp between the T- and the H-method energyat while the presently computed total energies agree with
estimators, as well as between their potential and kinetic eny,yse reported by Chakravarey al,'® the individual kinetic
ergy components. Far, =256, one concludes that the sys- 5nq potential energies do not. The kinetic energy reported by
tematic error is smaller than the statistical error for all ProP-Chakravartyet al® is ~ 0.8 K/particle higher than found in
erties computed. _An additional RW-WFPI simulation with ¢, present simulation@vith the potential energy being cor-
n,=512 in 40 million Monte Carlo passes has producedggpondingly lower The magnitude of this difference is well
results consistent with the findings above. The results argsige the statistical error bars involved and appears to sig-
summarized in Table IV and represent the energy valuefy| 5 systematic error. Based on the observed consistency

we report. between the results produced by three different path integral
methods and on the agreement between the T and H-method
IV. CONCLUSIONS estimators for each of these path integral formulations, we

In the present work we have considered a number c)Feel confident of the results we have reported in Table IV.

issues related to the choice of estimators for random series Note:After the present simulations had been completed,

path integral methods. We have illustrated our results by apwe. have !earned from D. M. .Ceperl'ey .that thg Oﬁ'd'.a gonal
air density used as the starting point in the simulations re-

i i i P
Eng:i% t;r%r;etgi ér;eo?r;) t?‘lneomde(?foticotr:g lz;l_igc\lljgtzl:su;?r?grn:gij ported i_n Ref. 15 was truncated_at first order in the expansion
weighted path integral techniques. The molecular hydroge f oﬁ-d@gonal_ dlsplac_ements instead of second order an_d
cluster is a strongly quantum mechanical system and is reﬁ- aF the '”C'“S'Of.‘ of this seqond-order term resolves the ki-
resentative of the type of problems one is likely to encountef€tc and potential energy difference noted above.
in many applications. Hence, it constitutes a useful bench-
mark for present and future path integral techniques and fo'?‘cK’\IOV\/LEDG'vIENTS
this reason it is important that its physical properties be de- The authors acknowledge support from the National Sci-
termined within advertized statistical error bars. Path integraénce Foundation through award Nos. CHE-0095053 and
methods capable of dealing with such highly quantum-CHE-0131114. They also wish to thank the Center for Ad-
mechanical systems in an efficient manner are needed, bottanced Scientific Computing and VisualizatiGhiCASCV)
for reliable determinations of the physical properties of theat Brown University, especially Dr. James O'Dell, for valu-
respective systems as well as for accurate parameterizatioable assistance with respect to the numerical simulations de-
of the intermolecular potentials. scribed in the present paper. They would also like to thank

We wish to make a number of points concerning theMr. Cristian Diaconu for helpful discussions concerning the
present results and the methods we have utilized to obtaipresent work. Finally, the authors would like to express a
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efforts in tracking down the origin of the pair density issues

noted in Sec. IV.

APPENDIX: EQUIVALENCE OF PATH
AND POINT ESTIMATORS

The main purpose of this section is to give a compact

form for the integral

fﬂd P[a]X..(x,x',a; B)O[ () + oBy(a)], (A1)

where@ is an arbitrary point in the interv@0,1]. In terms of
a standard Brownian motidisee Eq(1)], the above integral
can be put into the form

P[oB,=x'|oBy=x]E[e~AoV("BIdO (4B )| 0B, =x',

(TBO:X]
= f O(y)P[oB;=x',0By=y|oBo=x]
R

XJE[e‘ﬁfclJV("Bu)d“|oBl=x’ ,0B,=y,0Bo=x]dy.
(A2)

Using the Markov property of the Brownian motion, one
readily justifies the equalities

P[oB,=xX",0B,=Yy|oBy=X]
=P[oB;=x'|0By=Y]P[oB,=Yy|0By=X]

=psp(X,Y,08)piply,x’;(1—6)B] (A3)
and
E[e_ﬁfév(”Bu)d”| oB;=x",0By=y,0By=x]
= E[eiﬁ"-gv(gB“)d%O'Bg=y,O'BO= X]
X E[e™AIV@BIN 6B, =x', 5B ,=Yy]. (A4)

Performing the transformation of coordinate’s=u— 6
in the second factor of the right-hand side of E44) and
employing the invariance of the Brownian motion under time
translation

{0BuigloBy=y,0B1=x",u=0}

d
={0B,|oBo=Yy,0B;_,=x",u=0},

one obtains
E[e_ﬁfév("Bu)dU| oB;=x",0By=y,0By=x]
=E[efﬁfgv(”Bu)dﬂoBgzy,UBOZX]
x e B0 VBN GB, =X oBy=y].  (A5)
Let us focus on the term
E[e AIoV(eBIdY 4B —y, By=X].

Performing the substitution of variables =u/6 and em-
ploying the scaling property of the Brownian motion
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ifrB 4| 0Bo=X,0B,4=Yy,u=0}

d

={00YB |0 0Y’By=x,06YB,=y,u=0},
one proves
E[efﬁfgv(”Bu)dﬂO'B(,Zy,O'BOZX]

:E[e—ﬁeféV((rellzBu)du| c0Y2B, =y, 0 6¥2B,=x]

=p(X,Y;08) prp(X,y;6B). (AB)
In a similar fashion, one demonstrates that

1,

E[e_ﬁfo 6V(O—Bu)du| O'Bl, 0= X, ,O'BOZ y]

=plLy.x"5(1=0)Bllprply.X"; (1= 6) B]. (A7)

We now combine EqgA1)—(A3) and(A5)—(A7) to ob-
tain

| arrax.oox mpor(o) + o8y

= fﬁp(x,y;ﬂﬂ)p[y,xt(l— 0)B10(y)dy. (A8)

With the help of Eq(A8) and by cyclic invariance,

fdxf dP[a]X..(x, & 8)0[x+ oB%@)]
R QO
= deIdyp(x,y;0B)p[y,x;(1—6)B]O(y)
R R
=fdep(y,y;,8)O(y)

=f dxf dP[a]X..(x,a;8)O0(x). (A9)
R Q

Moreover, since the functio®(x) is arbitrary, the last iden-
tity also implies that the random variables and x
+oB%@) have identical distribution functions under the
probability measure

X.(X,a;8)dx dHa]
Jrdx[odP[a]X.(x,a;8) "

By settingO(x) =1 in Eq.(A8), one obtains the well-known
product formula

P(X,X':,B)=fﬂdp[axm(X.X’Eﬂ)

=fRP(X.Y:6B)P[y,X’:(1—9)/3]dy, (A10)

which is seen to be a consequence of some basic properties
of the Brownian motion.
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