4 research outputs found

    āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļēāļ‡āđ€āļ āļŠāļąāļŠāļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāđāļšāđˆāļ‡āļ•āļēāļĄāļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19 Voriconazole Pharmacokinetic Parameters Based on CYP2C19 Phenotype

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āđ€āļžāļ·āđˆāļ­āļŦāļēāļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļēāļ‡āđ€āļ āļŠāļąāļŠāļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļ‹āļķāđˆāļ‡āļˆāļ°āļ™āļģāđ„āļ›āļŠāļđāđˆāļ‚āļ™āļēāļ”āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāđ‚āļ”āļĒāđāļšāđˆāļ‡āļ•āļēāļĄāļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19 āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļ°āļ”āļąāļšāļĒāļēāļ•āđˆāļģāļŠāļļāļ”āđƒāļ™āđ€āļĨāļ·āļ­āļ”āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡āļāļēāļĢāļĢāļąāļāļĐāļēāļ—āļĩāđˆ 1-5 āļĄāļ./āļĨāļīāļ•āļĢ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļēāļĢāļ§āļīāļˆāļąāļĒāđ€āļŠāļīāļ‡āļŠāļģāļĢāļ§āļˆāđ‚āļ”āļĒāļāļēāļĢāđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļĒāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļˆāļēāļāđ€āļ§āļŠāļĢāļ°āđ€āļšāļĩāļĒāļ™āļ‚āļ­āļ‡āļœāļđāđ‰āļ›āļ§āļĒāļœāļđāđ‰āđƒāļŦāļāđˆāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļĢāļąāļāļĐāļēāļ”āđ‰āļ§āļĒāļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļ”āļ·āļ­āļ™āļĄāļāļĢāļēāļ„āļĄ 2555 āļ–āļķāļ‡āļĄāļĩāļ™āļēāļ„āļĄ 2559 āļ“ āđ‚āļĢāļ‡āļžāļĒāļēāļšāļēāļĨāļĢāļēāļĄāļēāļ˜āļīāļšāļ”āļĩ āļ‚āđ‰āļ­āļĄāļđāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āđ„āļ”āđ‰āđāļāđˆ āļ­āļēāļĒāļļ āđ€āļžāļĻ āļ™āđ‰āļģāļŦāļ™āļąāļ āļˆāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāđāļĨāļ°āļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19 āđāļšāļšāđāļœāļ™āļāļēāļĢāđƒāļŦāđ‰āļĒāļēāļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāđāļĨāļ°āļĢāļ°āļ”āļąāļšāļĒāļēāļ•āđˆāļģāļŠāļļāļ”āđƒāļ™āđ€āļĨāļ·āļ­āļ” āđāļĨāđ‰āļ§āļ„āļģāļ™āļ§āļ“āļ„āđˆāļēāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļēāļ‡āđ€āļ āļŠāļąāļŠāļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāđ‚āļ”āļĒāđƒāļŠāđ‰āļŠāļĄāļāļēāļĢ Michaelis-Menten āļˆāļēāļāļ™āļąāđ‰āļ™āļ„āļģāļ™āļ§āļ“āļ‚āļ™āļēāļ”āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļĢāļ°āļ”āļąāļšāļĒāļēāļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡āļāļēāļĢāļĢāļąāļāļĐāļēāđāļšāđˆāļ‡āļ•āļēāļĄāļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ 2C19 āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē:āļˆāļēāļāļœāļđāđ‰āļ›āđˆāļ§āļĒāļ—āļąāđ‰āļ‡āļŦāļĄāļ” 53 āļĢāļēāļĒ āđ€āļ›āđ‡āļ™āđ€āļžāļĻāļŠāļēāļĒ 29 āļĢāļēāļĒ (54.7%) āļ­āļēāļĒāļļāđāļĨāļ°āļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļ‰āļĨāļĩāđˆāļĒ 52.98 āļ›āļĩ āđāļĨāļ° 57.97 āļāļīāđ‚āļĨāļāļĢāļąāļĄ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ„āđˆāļēāļĄāļąāļ˜āļĒāļāļēāļ™āļ‚āļ­āļ‡āļ„āđˆāļēāļ„āļ‡āļ—āļĩāđˆ Michaelis-Menten (Km) āļŠāļģāļŦāļĢāļąāļšāļœāļđāđ‰āļ—āļĩāđˆāļĄāļĩāļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19 āđāļšāļš extensive metabolizer (EM) āđāļĨāļ° āđāļšāļš non-extensive metabolizer (non-EM) āđ€āļ—āđˆāļēāļāļąāļš 0.262 āļĄāļ./āļĨāļīāļ•āļĢ āđāļĨāļ° 0.666 āļĄāļ./āļĨāļīāļ•āļĢ āļ•āļēāļĄāļĨāļģāļ”āļąāļš (P-value = 0.008) āļ„āđˆāļēāļĄāļąāļ˜āļĒāļāļēāļ™āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ€āļĄāļ—āļēāļšāļ­āļĨāļīāļŠāļĄāļĒāļēāļŠāļđāļ‡āļŠāļļāļ” (Vmax) āļŠāļģāļŦāļĢāļąāļš EM āđāļĨāļ° non-EM āđ€āļ—āđˆāļēāļāļąāļš 0.425 āļĄāļ./āļāļ./āļŠāļĄ. āđāļĨāļ° 0.483 āļĄāļ./āļāļ./āļŠāļĄ. āļ•āļēāļĄāļĨāļģāļ”āļąāļš (P-value = 0.262) āļ‚āļ™āļēāļ”āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļ—āļĩāđˆāđāļ™āļ°āļ™āļģāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļ°āļ”āļąāļšāļĒāļēāļ•āđˆāļģāļŠāļļāļ”āđƒāļ™āđ€āļĨāļ·āļ­āļ”āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡ 1 - 5 āļĄāļ./āļĨāļīāļ•āļĢ āđ€āļ—āđˆāļēāļāļąāļš 8.9 - 10.7 āļĄāļ./āļāļ./āļ§āļąāļ™ āđāļĨāļ° 6.7 - 9.9 āļĄāļ./āļāļ./āļ§āļąāļ™ āļŠāļģāļŦāļĢāļąāļš EM āđāļĨāļ° non-EM āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļŠāļ°āļ”āļ§āļāđƒāļ™āļ—āļēāļ‡āļ›āļāļīāļšāļąāļ•āļī āļ‚āļ™āļēāļ”āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļ—āļĩāđˆāđāļ™āļ°āļ™āļģāļŠāļģāļŦāļĢāļąāļš EM āđāļĨāļ° non-EM āđ€āļ—āđˆāļēāļāļąāļš 10 āļĄāļ./āļāļ./āļ§āļąāļ™ āđāļĨāļ° 8.5 āļĄāļ./āļāļ./āļ§āļąāļ™ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļ°āļ”āļąāļšāļĒāļēāļ•āđˆāļģāļŠāļļāļ”āđƒāļ™āđ€āļĨāļ·āļ­āļ”āļ›āļĢāļ°āļĄāļēāļ“ 2 āļĄāļ./āļĨāļīāļ•āļĢ āļŠāļĢāļļāļ›: āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨ Km,Vmax āđāļĨāļ°āļ‚āļ™āļēāļ”āļĒāļēāļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨāļŠāļģāļŦāļĢāļąāļšāļœāļđāđ‰āļ›āđˆāļ§āļĒāļœāļđāđ‰āđƒāļŦāļāđˆāđ„āļ—āļĒāđāļšāđˆāļ‡āļ•āļēāļĄāļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19 āđāļ•āđˆāļˆāļēāļāļ„āđˆāļē Km āđāļĨāļ° Vmax āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ„āđˆāļ­āļ™āļ‚āđ‰āļēāļ‡āļĄāļēāļāļžāļīāļˆāļēāļĢāļ“āļēāļˆāļēāļāļŠāđˆāļ§āļ‡āļ—āļĩāđˆāļāļ§āđ‰āļēāļ‡ āļˆāļķāļ‡āļĒāļąāļ‡āđ„āļĄāđˆāđāļ™āļ°āļ™āļģāđƒāļŦāđ‰āđƒāļŠāđ‰āļ‚āļ™āļēāļ”āļĒāļēāļ—āļĩāđˆāļ„āļģāļ™āļ§āļ“āđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļˆāļ™āļāļ§āđˆāļēāļˆāļ°āđ„āļ”āđ‰āļ—āļ”āļŠāļ­āļšāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļ‚āļ™āļēāļ”āļĒāļēāļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āļāļēāļĢāļ•āļīāļ”āļ•āļēāļĄāļ•āļĢāļ§āļˆāļ§āļąāļ”āļĢāļ°āļ”āļąāļšāļĒāļēāđƒāļ™āđ€āļĨāļ·āļ­āļ”āļˆāļķāļ‡āļĒāļąāļ‡āļˆāļģāđ€āļ›āđ‡āļ™ āļ„āļģāļŠāļģāļ„āļąāļ: āļ§āļ­āļĢāļīāđ‚āļ„āļ™āļēāđ‚āļ‹āļĨ, āļŸāļĩāđ‚āļ™āđ„āļ—āļ›āđŒāļ‚āļ­āļ‡ CYP2C19, āđ€āļ āļŠāļąāļŠāļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāđāļšāļšāđ„āļĄāđˆāđ€āļ›āđ‡āļ™āđ€āļŠāđ‰āļ™āļ•āļĢāļ‡, āļ‚āļ™āļēāļ”āļĒāļēāđāļ™āļ°āļ™āļģ AbstractObjective: To determine pharmacokinetic parameters of voriconazole (VRZ) that will lead to finding appropriate VRZ dose to maintain trough concentration (Ctr) within target therapeutic range of 1-5 mg/L based on CYP2C19 phenotype. Methods: The medical records of adult patients who received VRZ treatment between January 2012 and March 2016 at Ramathibodi Hospital were retrospectively reviewed. Patient’s data including gender, age, body weight, CYP2C19 genotype and phenotype, VRZ dosing regimen, and VRZ Ctr were collected. The pharmacokinetic parameters of VRZ were calculated using conventional nonlinear pharmacokinetic study, i.e., Michaelis-Menten equation. Proper dose for keeping VRZ Ctr within therapeutic range were then determined for each CYP2C19 phenotype. Results: A total of 53 patients were included into this study. Twenty-nine (54.7%) were male with mean age and body weight of 52.98 yrs and 57.97 kg, respectively. Median Michaelis-Menten constant (Km) for CYP2C19 extensive metabolizers (EM) and non-extensive metabolizers (non-EM) were 0.262 mg/L and 0.666 mg/L, respectively (P-value = 0.008). Median maximum rate of metabolism (Vmax) for EM and non-EM were 0.425 mg/kg/h and 0.483 mg/kg/h, respectively (P-value = 0.262). The doses to achieve therapeutic Ctr (1 - 5 mg/L) were 8.9 - 10.7 mg/kg/day and 6.7 - 9.9 mg/kg/day for EM and non-EM, respectively. For more applicable in real world practice, the rounded dose of 10 mg/kg/day and 8.5 mg/kg/day for EM and non-EM, respectively, were recommended to provide VRZ Ctr around 2 mg/L. Conclusion: This present study provided Michaelis-Menten constant (Km and Vmax) of VRZ for Thai adult patients and the dose recommendation for this patient group based on CYP2C19 phenotype. The Km and Vmax of VRZ in this study show high variability judged from their wide range, therefore our recommended doses still cannot be used in practice unless its appropriate would be validated. Therapeutic drug monitoring of VRZ is still warranted. Keywords: voriconazole, CYP2C19 phenotype, nonlinear pharmacokinetic, dose recommendation

    A case of naganishial pleuritis in a kidney transplant recipient

    No full text
    Abstract The Naganishia species is a mycosis, previously classified as a non‐neoformans Cryptococcus species. The increased number of naganishial infections occurs predominantly in immunocompromised conditions, especially in people living with HIV with low CD4 cell count, primary immunodeficiencies, and iatrogenic immunosuppression. The lungs can serve as the primary site of infection, leading to various pulmonary manifestations. However, naganishial pleural effusions are unrecognized and challenged in diagnosis because of their presentation, which can mimic tuberculous pleural effusion. Herein, we report the case of a 53‐year‐old man who had undergone kidney transplantation for more than 2 years and presented with chest tightness and dyspnea. Computed chest tomography demonstrated left pleural nodules and pleural effusion, later confirmed as exudative pleural effusion with a lymphocyte predominance. Pleuroscopy revealed multiple small pleural nodules, and biopsies of these nodules were performed. Naganishia spp. was identified by the 18S rRNA sequencing technique

    Longitudinal study of disease severity and external factors in cognitive failure after COVID-19 among Indonesian population

    No full text
    Abstract The COVID-19 infection is assumed to induce cognitive failure. Identifying the relationship between COVID-19, the effect of vaccination and medication, and accommodating non-COVID-19 factors to cognitive failure is essential. This study was conducted in Indonesia from September 2021 to January 2023. Demographic information, clinical data, comorbidities, vaccination, and medication during COVID-19 were obtained, as well as a 6-month cognitive assessment with Cognitive Failures Questionnaire/CFQ, Fatigue Severity Score, and Generalized Anxiety Disorder (GAD-7). A Structural Equation Model explains the relationship between potential predictors and cognitive failure. The average score of CFQ after 6 months was 45.6 ± 23.1 out of 100. The severity of the disease, which was associated with vaccination status, age, previous infection, and unit of treatment (p  0.05). This study concludes that cognitive failure after COVID-19 is a multifactorial event and does not solely depend on COVID-19 severity. It is crucial to re-address the factors related to the long-term efficacy of vaccination and medication and focus on non-health factors affecting cognitive failure. Trial Registration: NCT05060562
    corecore