15 research outputs found

    Presence and dynamic redistribution of type I inositol 1,4,5-trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions

    No full text
    We studied the presence and distribution of the intracellular calcium channel regulating type I inositol 1,4,5-trisphosphate receptors (IP3R) in human immature and mature oocytes, pronuclear zygotes and cleaved embryos using a specific antibody. Two approaches were used: (i) fluorescence immunocytochemistry using a confocal laser scanning microscope (CLSM) and (ii) Western blotting. With confocal microscopy, the receptors were found in the oocytes, fertilized zygotes as well as cleaved embryos at all stages studied. The pattern and distribution of the receptor staining in the oocytes changed gradually from a diffuse granular patchy one at the germinal vesicle (GV) stage to a reticular and predominantly peripheral one through the metaphase and metaphase II (MII) stages. After fertilization, the distribution changed gradually to both, peripheral and central in the zygotes and early 2-4-cell embryos and predominantly perinuclear in the 6-8-cell embryos. Furthermore, an overall increase in the staining intensity was observed from GV to MII stage oocytes and from zygotes to 6-8-cell embryos. We also studied the spatial distribution of the receptor in detail by constructing three-dimensional images from the serial optical sections obtained on the CLSM. Peculiar peripheral aggregates of receptor clusters were noted in the MII stage oocytes, zygotes and some blastomeres from early cleaved embryos. Finally, Western blots performed on the extracts of 72 in-vitro matured oocytes and 50 spare cleavage stage embryos showed positive bands at similar to 260 kDa. These findings coincide with and thus possibly represent the dynamic changes occurring in the cellular Ca2+ release systems through oocyte maturation, fertilization and early embryogenesis. Thus, type I IP3R are likely to play a role during these stages of early development in the huma

    Inositol 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP(3) are blocked by a specific antibody to the type I receptor

    No full text
    Tape I inositol 1,4,5-trisphosphate-sensitive receptors (InsP(3)R) are expressed in human oocytes and may be involved in operating the Ca2+ release triggered by the fertilizing sperm. This study examines the contribution of type I InsP(3)R in operating Ca2+ release in human oocytes secondary to InsP(3) itself, using a specific function-blocking antibody in conjunction with photolytic release of microinjected InsP(3). Intracellular Ca2+ responses were assessed in oocytes microinjected with only caged InsP(3) in experiment set A, while in experiment sets B and C, sibling oocytes were injected with caged InsP(3) and the blocking antibody or a corresponding volume of medium, prior to flash photolysis. In experiment set C, certain fertilization-related phenomena (cortical granule exocytosis and chromatin configurations) were assessed using optical sections and three-dimensional image reconstructions obtained from a confocal laser scanning microscope. In experiment set A, photolytic release of InsP(3) triggered a Ca2+ response (increase from similar to100 to 220 nmol/l followed by an exponential recovery, n = 8) and a wave in the oocytes that spread from the stimulation point to the opposite pole. In set B, photolytic InsP(3) release generated Ca2+ responses in control oocytes (n = 9), but not in the antibody-injected oocytes (n = 7). In set C, cortical granule exocytosis and anaphase chromosome configurations were noted in the control oocytes after flash photolysis (n = 6). These changes were completely absent in antibody injected oocytes as their cortical granules were intact and the chromosomes were in metaphase. These oocytes had also lacked Ca2+ responses as in set B (n = 5). This study demonstrates the functional presence of type I InsP(3)R-operated Ca2+ channels in human oocytes and further suggests an active role of InsP(3) in triggering the Ca2+ rise and secondary activation phenomena at fertilization

    Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo.

    No full text
    Nitric oxide (NO) is reported to play significant a role in oocyte activation and maturation, implantation, and early embryonic development. Previously we have shown that NO forms an important component of the oocyte microenvironment, and functions effectively to delay oocyte aging. Thus, precise information about intra-oocyte NO concentrations [NO] will result in designing more accurate treatment plans in assisted reproduction. In this work, the direct, real-time and quantitative intra-oocyte [NO] was measured utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments, but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu. This experiment suggests that the NO levels of oocytes obtained from young animals are significantly higher than those of oocytes obtained from old animals. Additionally the NO levels stay constant during the measurements; however, the intra-oocyte [NO] is reduced significantly (70-75% reduction) in response to L-NAME incubation, suggesting that NO measurements are truly NOS based rather than caused by an unknown interfering substance in our system. We believe this first demonstration of the direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. Moreover, this finding confirms and extends our previous work showing that supplementation with NO delays the oocyte aging process

    Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality.

    No full text
    Hydrogen peroxide (H2O2) is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction) in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO), and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl) facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions

    Real-time measurements of intra-oocyte NO concentration utilizing NO-selective electrode.

    No full text
    <p>With the use of the oocyte media (PBS buffer) surface as the “zero point”, the NO electrode tip was inserted directly into the ooplasm. The picoampere differences were recorded and the stable intra-oocyte reading was taken as the NO signal. The arrows show the time of insertion and withdrawal from the 3 different oocytes. The inset is when the oocyte ZP was slit open using a PZD micropipette, and a 5 µm diameter probe was inserted deep into the ooplasm, The oolemma was broken after deep invagination using conventional ICSI technique.</p
    corecore