24 research outputs found

    Mechanism of Mg 2+ -accompanied product release in sugar nucleotidyltransferases

    Get PDF
    The nucleotidyl transfer reaction, catalyzed by sugar nucleotidyltransferases (SNTs), is assisted by two active site Mg 2+ ions. While studying this reaction using X-ray crystallography, we captured snapshots of the pyrophosphate (product) as it exits along a pocket. Surprisingly, one of the active site Mg 2+ ions remains coordinated to the exiting pyrophosphate. This hints at the participation of Mg 2+ in the process of product release, besides its role in catalyzing nucleotidyl transfer. These observations are further supported by enhanced sampling molecular dynamics simulations. Free energy computations suggest that the product release is likely to be rate limiting in SNTs, and the origin of the high free energy barrier for product release could be traced back to the “slow” conformational change of an Arg residue at the exit end of the pocket. These results establish a dual role for Mg 2+, and propose a general mechanism of product release during the nucleotidyl transfer by SNTs

    Novel compounds as dipeptidyl peptidase IV (dpp iv) inhibitors

    Get PDF
    The present invention is related to novel compounds of the general formula (A), their tautomeric forms, their stereoisomers, their pharmaceutically acceptable salts, pharmaceutical compositions containing them, methods of making of the above compounds, and their use as Dipeptidyl Peptidase-IV (DPP-IV) Inhibitors, which are useful in the treatment or prevention of diseases particularly Type II diabetes, other complications related to diabetes and other pathogenic conditions in which DPP IV enzyme is involved

    Predicting the next pandemic: VACCELERATE ranking of the World Health Organization's Blueprint for Action to Prevent Epidemics

    Get PDF
    Introduction: The World Health Organization (WHO)'s Research and Development (R&D) Blueprint for Action to Prevent Epidemics, a plan of action, highlighted several infectious diseases as crucial targets for prevention. These infections were selected based on a thorough assessment of factors such as transmissibility, infectivity, severity, and evolutionary potential. In line with this blueprint, the VACCELERATE Site Network approached infectious disease experts to rank the diseases listed in the WHO R&D Blueprint according to their perceived risk of triggering a pandemic. VACCELERATE is an EU-funded collaborative European network of clinical trial sites, established to respond to emerging pandemics and enhance vaccine development capabilities. Methods: Between February and June 2023, a survey was conducted using an online form to collect data from members of the VACCELERATE Site Network and infectious disease experts worldwide. Participants were asked to rank various pathogens based on their perceived risk of causing a pandemic, including those listed in the WHO R&D Blueprint and additional pathogens. Results: A total of 187 responses were obtained from infectious disease experts representing 57 countries, with Germany, Spain, and Italy providing the highest number of replies. Influenza viruses received the highest rankings among the pathogens, with 79 % of participants including them in their top rankings. Disease X, SARS-CoV-2, SARS-CoV, and Ebola virus were also ranked highly. Hantavirus, Lassa virus, Nipah virus, and henipavirus were among the bottom-ranked pathogens in terms of pandemic potential. Conclusion: Influenza, SARS-CoV, SARS-CoV-2, and Ebola virus were found to be the most concerning pathogens with pandemic potential, characterised by transmissibility through respiratory droplets and a reported history of epidemic or pandemic outbreaks
    corecore