6 research outputs found

    Analysis of RGB Plant Images to Identify Root Rot Disease in Korean Ginseng Plants Using Deep Learning

    No full text
    Ginseng is an important medicinal plant in Korea. The roots of the ginseng plant have medicinal properties; thus, it is very important to maintain the quality of ginseng roots. Root rot disease is a major disease that affects the quality of ginseng roots. It is important to predict this disease before it causes severe damage to the plants. Hence, there is a need for a non-destructive method to identify root rot disease in ginseng plants. In this paper, a method to identify the root rot disease by analyzing the RGB plant images using image processing and deep learning is proposed. Initially, plant segmentation is performed, and then the noise regions are removed in the plant images. These images are given as input to the proposed linear deep learning model to identify root rot disease in ginseng plants. Transfer learning models are also applied to these images. The performance of the proposed method is promising in identifying root rot disease

    Analysis of RGB Plant Images to Identify Root Rot Disease in Korean Ginseng Plants Using Deep Learning

    No full text
    Ginseng is an important medicinal plant in Korea. The roots of the ginseng plant have medicinal properties; thus, it is very important to maintain the quality of ginseng roots. Root rot disease is a major disease that affects the quality of ginseng roots. It is important to predict this disease before it causes severe damage to the plants. Hence, there is a need for a non-destructive method to identify root rot disease in ginseng plants. In this paper, a method to identify the root rot disease by analyzing the RGB plant images using image processing and deep learning is proposed. Initially, plant segmentation is performed, and then the noise regions are removed in the plant images. These images are given as input to the proposed linear deep learning model to identify root rot disease in ginseng plants. Transfer learning models are also applied to these images. The performance of the proposed method is promising in identifying root rot disease

    Comparative Determination of Phenolic Compounds in Arabidopsis thaliana Leaf Powder under Distinct Stress Conditions Using Fourier-Transform Infrared (FT-IR) and Near-Infrared (FT-NIR) Spectroscopy

    No full text
    The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements of Arabidopsis thaliana leaf powder sample phenolic compounds using Fourier-transform infrared and near-infrared spectroscopic techniques under six distinct stress conditions. The prediction analysis of 600 leaf powder samples under different stress conditions (LED lights and drought) was performed using PLSR, PCR, and NAS-based HLA/GO regression analysis methods. The results obtained through FT-NIR spectroscopy yielded the highest correlation coefficient (Rp2) value of 0.999, with a minimum error (RMSEP) value of 0.003 mg/g, based on the PLSR model using the MSC preprocessing method, which was slightly better than the correlation coefficient (Rp2) value of 0.980 with an error (RMSEP) value of 0.055 mg/g for FT-IR spectroscopy. Additionally, beta coefficient plots present spectral differences and the identification of important spectral signatures sensitive to the phenolic compounds in the measured powdered samples. Thus, the obtained results demonstrated that FT-NIR spectroscopy combined with partial least squares regression (PLSR) and suitable preprocessing method has a solid potential for non-destructively predicting phenolic compounds in Arabidopsis thaliana leaf powder samples

    Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019

    No full text
    Health-care needs change throughout the life course. It is thus crucial to assess whether health systems provide access to quality health care for all ages. W measured the Healthcare Access and Quality (HAQ) Index overall and for select age groups in 204 locations from 1990 to 2019. For GBD 2019, HAQ Index construction methods were updated to use the arithmetic mean of scaled mortality-to-incidence ratios (MIRs) and risk-standardised death rates (RSDRs) for 32 causes of death that should not occur in the presence of timely, quality health care. Across locations and years, MIRs and RSDRs were scaled from 0 (worst) to 100 (best) separately, putting the HAQ Index on a different relative scale for each age group. We estimated absolute convergence for each group on the basis of whether the HAQ Index grew faster in absolute terms between 1990 and 2019 in countries with lower 1990 HAQ Index scores than countries with higher 1990 HAQ Index scores and by Socio-demographic Index (SDI) quintile. Interpretation Although major gaps remain across levels of social and economic development, convergence in the young group is an encouraging sign of reduced disparities in health-care access and quality. However, divergence in the working and post-working groups indicates that health-care access and quality is lagging at lower levels of social and economic development. To meet the needs of ageing populations, health systems need to improve health-care access and quality for working-age adults and older populations while continuing to realise gains among the young
    corecore