760 research outputs found

    Four methods for measuring the solubilities of gases and vapors in liquids and polymers

    Get PDF
    This review is dedicated to professors Alexey Morachevsky and Natalia Smirnova to celebrate their distinguished contributions to research and education at the University of St.Petersburg.Peer reviewedPreprintPublisher PD

    Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    Get PDF
    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination

    Enhanced Immune Responses by Skin Vaccination with Influenza Subunit Vaccine in Young Hosts

    Get PDF
    Skin has gained substantial attention as a vaccine target organ due to its immunological properties, which include a high density of professional antigen presenting cells (APCs). Previous studies have demonstrated the effectiveness of this vaccination route not only in animal models but also in adults. Young children represent a population group that is at high risk from influenza infection. As a result, this group could ben- efit significantly from influenza vaccine delivery approaches through the skin and the improved immune response it can induce. In this study, we compared the immune responses in young BALB/c mice upon skin delivery of influenza vaccine with vaccination by the conventional intramuscular route. Young mice that received 5 fLg of H1N1 A/Ca/07/09 influenza subunit vaccine using MN demonstrated an improved serum antibody response (IgG1 and IgG2a) when compared to the young IM group, accompanied by higher numbers of influenza-specific antibody secreting cells (ASCs) in the bone marrow. In addition, we observed increased activation of follicular helper T cells and formation of germinal centers in the regional lymph nodes in the MN immunized group, rapid clearance of the virus from their lungs as well as complete survival, compared with partial protection observed in the IM-vaccinated group. Our results support the hypothesis that influenza vaccine delivery through the skin would be beneficial for protecting the high-risk young population from influenza infection

    Rapid local anesthesia in humans using minimally invasive microneedles

    Get PDF
    Objective: This study tested the hypothesis that minimally invasive microneedles cause less pain during injection of lidocaine, but induce local anesthesia in humans with the same rapid onset and efficacy as intradermal lidocaine injection using hypodermic needles. Methods: This study was a randomized, single-blinded, within participants, controlled design. Hollow, 500-mm long microneedles were used to inject lidocaine to the forearm of 15 human participants. The associated pain was recorded using a visual analog (VAS) scale. The area and depth of numbness were determined at 0, 7.5, and 15 minutes after injection. Lidocaine was also injected to the dorsum of the hand near a vein, followed by placement of an intravenous catheter and measurement of associated pain. A 26-gauge intradermal bevel hypodermic needle similarly administered lidocaine on the opposite forearm/hand to serve as the positive control. Results: VAS pain scores revealed that injection using microneedles was significantly less painful than hypodermic needles for both the forearm and dorsum of the hand injections. However, there was no significant difference in the area or depth of the resulting numbness between the 2 treatment methods at any time point (0, 7.5, and 15 min) indicating that microneedles had immediate onset and were as effective as hypodermic needles in inducing dermal anesthesia. Moreover, insertion of an intravenous catheter immediately after lidocaine injection on the dorsum of the hand led to comparable pain scores for the microneedle and hypodermic needle treated sites, further confirming efficacy of microneedles in inducing rapid local anesthesia. Lastly, 77% of the participants preferred microneedles and 80% indicated that they did not consider microneedles to be painful. Discussion: This study demonstrates for the first time that microneedle-based lidocaine injection is as rapid and as effective as hypodermic injection in inducing local anesthesia while resulting in significantly less pain during injection

    Predicting phase equilibria in polydisperse systems

    Full text link
    Many materials containing colloids or polymers are polydisperse: They comprise particles with properties (such as particle diameter, charge, or polymer chain length) that depend continuously on one or several parameters. This review focusses on the theoretical prediction of phase equilibria in polydisperse systems; the presence of an effectively infinite number of distinguishable particle species makes this a highly nontrivial task. I first describe qualitatively some of the novel features of polydisperse phase behaviour, and outline a theoretical framework within which they can be explored. Current techniques for predicting polydisperse phase equilibria are then reviewed. I also discuss applications to some simple model systems including homopolymers and random copolymers, spherical colloids and colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like colloidal particles; the results surveyed give an idea of the rich phenomenology of polydisperse phase behaviour. Extensions to the study of polydispersity effects on interfacial behaviour and phase separation kinetics are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed Matter; uses Institute of Physics style file iopart.cls (included
    corecore