267 research outputs found

    Pretreatment of Miscanthus giganteus with Lime and Oxidants for Biofuels

    Get PDF
    ACKNOWLEDEGMENTS The authors are grateful to the Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, for financial support, Dr. Stefan R. Bauer, Valerie D. Mitchell, and Ana Belen Ibanez Zamora for technical assistance, and Jason Cai for fruitful discussions. The authors thank the China Scholarship Council for financial assistance to Fuxin Yang during his stay at University of California, Berkeley.Peer reviewedPostprin

    Thermodynamics of folding and association of lattice-model proteins

    Get PDF
    Closely related to the “protein folding problem” is the issue of protein misfolding and aggregation. Proteinaggregation has been associated with the pathologies of nearly 20 human diseases and presents serious difficulties during the manufacture of pharmaceutical proteins. Computational studies of multiprotein systems have recently emerged as a powerful complement to experimental efforts aimed at understanding the mechanisms of proteinaggregation. We describe the thermodynamics of systems containing two lattice-model 64-mers. A parallel tempering algorithm abates problems associated with glassy systems and the weighted histogram analysis method improves statistical quality. The presence of a second chain has a substantial effect on single-chain conformational preferences. The melting temperature is substantially reduced, and the increase in the population of unfolded states is correlated with an increase in interactions between chains. The transition from two native chains to a non-native aggregate is entropically favorable. Non-native aggregates receive ∼25% of their stabilizing energy from intraprotein contacts not found in the lowest-energy structure. Contact maps show that for non-native dimers, nearly 50% of the most probable interprotein contacts involve pairs of residues that form native contacts, suggesting that a domain-swapping mechanism is involved in self-association
    corecore