107 research outputs found
Variable sea-ice conditions influence trophic dynamics in an Arctic community of marine top predators
Sea-ice coverage is a key abiotic driver of annual environmental conditions in Arctic marine ecosystems and could be a major factor affecting seabird trophic dynamics. Using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in eggs of thick-billed murres (Uria lomvia), northern fulmars (Fulmarus glacialis), glaucous gulls (Larus hyperboreus), and black-legged kittiwakes (Rissa tridactyla), we investigated the trophic ecology of prebreeding seabirds nesting at Prince Leopold Island, Nunavut, and its relationship with sea-ice conditions. The seabird community of Prince Leopold Island had a broader isotopic niche during lower sea-ice conditions, thus having a more divergent diet, while the opposite was observed during years with more extensive sea-ice conditions. Species' trophic position was influenced by sea ice; in years of lower sea-ice concentration, gulls and kittiwakes foraged at higher trophic levels while the opposite was observed for murres and fulmars. For murres and fulmars over a longer time series, there was no evidence of the effect of sea-ice concentration on species' isotopic niche. Results suggest a high degree of adaptation in populations of high Arctic species that cope with harsh and unpredictable conditions. Such different responses of the community isotopic niche also show that the effect of variable sea-ice conditions, despite being subtle at the species level, might have large
Characterization of an Ionization Readout Tile for nEXO
A new design for the anode of a time projection chamber, consisting of a
charge-detecting "tile", is investigated for use in large scale liquid xenon
detectors. The tile is produced by depositing 60 orthogonal metal
charge-collecting strips, 3~mm wide, on a 10~\si{\cm} 10~\si{\cm}
fused-silica wafer. These charge tiles may be employed by large detectors, such
as the proposed tonne-scale nEXO experiment to search for neutrinoless
double-beta decay. Modular by design, an array of tiles can cover a sizable
area. The width of each strip is small compared to the size of the tile, so a
Frisch grid is not required. A grid-less, tiled anode design is beneficial for
an experiment such as nEXO, where a wire tensioning support structure and
Frisch grid might contribute radioactive backgrounds and would have to be
designed to accommodate cycling to cryogenic temperatures. The segmented anode
also reduces some degeneracies in signal reconstruction that arise in
large-area crossed-wire time projection chambers. A prototype tile was tested
in a cell containing liquid xenon. Very good agreement is achieved between the
measured ionization spectrum of a Bi source and simulations that
include the microphysics of recombination in xenon and a detailed modeling of
the electrostatic field of the detector. An energy resolution =5.5\%
is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only
resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay
The next-generation Enriched Xenon Observatory (nEXO) is a proposed
experiment to search for neutrinoless double beta () decay in
Xe with a target half-life sensitivity of approximately years
using kg of isotopically enriched liquid-xenon in a time
projection chamber. This improvement of two orders of magnitude in sensitivity
over current limits is obtained by a significant increase of the Xe
mass, the monolithic and homogeneous configuration of the active medium, and
the multi-parameter measurements of the interactions enabled by the time
projection chamber. The detector concept and anticipated performance are
presented based upon demonstrated realizable background rates.Comment: v2 as publishe
Comparison of Proteomic Assessment Methods in Multiple Cohort Studies
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155922/1/pmic13292_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155922/2/pmic13292.pd
Type 2 Diabetes Modifies the association of Cad Genomic Risk Variants With Subclinical atherosclerosis
BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D.
METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test.
RESULTS: Using a Bonferroni-corrected significance threshold of
CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC
Experts’ opinions on threats to Leach’s Storm-Petrels (Hydrobates leucorhous) across their global range
This is the final version. Available on open access from Resilience Alliance via the DOI in this recordSeabirds are declining globally, though the threats they face differ among and within species and populations. Following substantial population declines at several breeding colonies, Leach’s Storm-Petrel (Hydrobates leucorhous) was uplisted from Least Concern to Vulnerable by the International Union for Conservation of Nature (IUCN) in 2016. Reasons for these declines are unclear, and it is important to identify threats the species faces across its global breeding range to guide research directions and inform conservation efforts. We solicited feedback from 37 Leach’s Storm-Petrel scientific experts from eight countries on the importance of different threats facing the species on land and at sea. Perceived threats to extant colonies varied spatially, with a consensus within regions for main threats. Most researchers agreed that the main threats at or near colonies are avian and mammalian predators and onshore light attraction. At-sea threats have been less studied and were harder to identify and rank, but include offshore lights and structures, spatial shifts in prey, and contaminants. Climate change was not listed specifically because of its multifaceted repercussions, but several perceived threats are linked to climate change. Globally, introduction of mammalian predators is an overarching driver of seabird colony decline or extirpation; thus biosecurity must be considered an important measure for the conservation of storm-petrels. In addition, filling knowledge gaps and implementing a series of regionally relevant and targeted strategies that lead to small but cumulative conservation successes may be the best approach for this species.MITACS fellowshi
- …